Processing math: 100%

網頁

2020年11月9日 星期一

109年專科學力鑑定-微積分詳解

教育部109年自學進修專科學校學力鑑定考試
專業科目(一): 微積分 詳解
limx109x109x109=limx109(x109)(x109)=limx10912x1=limx10912x=12109(A)

g(x)=x1093x2020{x1090x20200x[109,2020)(2020,)(D)

x2xyy2=1dydx(x2xyy2)=dydx(1)2xyxdydx2ydydx=02xy=(x+2y)dydxdydx=2xyx+2ydydx|(2,1)=412+2=34(B)

g(x)=xx2+8g(x)=x2+8+x2x2+82x=x2+8+x2x2+8g(1)=9+19=3+13=103(D)

g(x)=sinxx2+1g(x)=cosxx2+12xsinx(x2+1)2g(0)=110=1(A)

limxx109ex=limx(x109)(ex)=limx(109x108)(ex)=limx(109108x107)(ex)==limx109!ex=0(A)

h(x)=x33+x222xh(x)=x2+x2=(x+2)(x1)h(x)=0(x+2)(x1)=0x=1,2(B)

f(x)=2x+xf(x)=2x2+1f(x)=4x3f(x)=02x2=1x=±2{f(2)>0f(2)<0f(2),x[1,3](C)

g(x)=sinxg(x)=cosxg(x)=sinxg[3](x)=cosxg[4](x)=g(x)=sinxg[n](0)={(1)kcosx,n=2k+10,n=2k,k=0,1,2,...g(x)=sinx=n=0g[n](0)n!xn=11!x13!x3+15!x5f(x)=sinx4=11!x413!x12+15!x20{a1=0a4=10a8=0a12=1/60(C)

Ω={(x,y)x2+y21}{x=rcosθy=rsinθ,0r1,0θ2πΩ11+x2+y2dxdy=2π010r1+r2drdθ=2π0[12ln(1+r2)]|10dθ=2π012ln2dθ=12ln2×2π=πln2(B)

limn15+25++n5n6=limnn2(n+1)2(2n2+2n1)/12n6=limn2n6/12n6=16(B)

{u=cot1xdv=dx{du=11+x2dxv=xcot1xdx=xcot1x+x1+x2dx=xcot1x+12ln(1+x2)10cot1xdx=[xcot1x+12ln(1+x2)]|10=cot11+12ln2=π4+ln2(D)

211x2+7x+12dx=211(x+3)(x+4)dx=211x+31x+4dx=[ln|x+3|ln|x+4|]|11=ln4ln5ln2+ln3=ln45ln23=ln(45×32)=ln65(C)

x=2tanudx=2sec2udu22(2+x2)3/2dx=π/4π/4(2+2tan2u)3/22sec2udu=2π/4π/4(2sec2u)3/2sec2udu=12π/4π/4(sec2u)1/2du=12π/4π/4cosudu=12[sinu]|π/4π/4=12×2=12(C)

π/2π/211+cosxdx=π/2π/211+2cos2(x/2)1dx=π/2π/212sec2(x/2)dx=[tan(x/2)]|π/2π/2=1(1)=2(B)

π/20sin2(x)cos3(x)dx=π/20(1cos2(x))cos3(x)dx=π/20cos3(x)cos5(x)dx=[(sin(x)13sin3(x))(sin(x)23sin3(x)+15sin5(x))]|π/20=[13sin3(x)15sin5(x)]|π/20=1315=215f(x)[0,π2]=π/20f(x)dxπ/2=2/15π/2=415π(A)

{x=rcosθy=rsinθr=4cosθr2=4rcosθx2+y2=4x(x2)2+y2=22{(2,0)=2=4π×12=2π(B)

12V=π02πxsinxdx=2π[sinxxcosx]|π0=2π2V=4π2(D)

g(s,t)=f(x(s,t),y(s,t))=f(s+t2,ets2)=(s+t2)ets2=e(ets2)ln(s+t2)gt(0,1)=(etln(s+t2)+(ets2)2ts+t2)e(ets2)ln(s+t2)gt(0,1)=(e1ln(1)+(e10)20+1)e(e10)ln(1)=(0+2e)e0=2e(??)註:公布的答案為(C)

f(x,y)=1xxy+8y{fx=1x2y=0fy=x8y2=0{y=1x2x=8y2{x=1/2y=4f(1/2,4)=222=6(A)


解題僅供參考

1 則留言: