教育部109年自學進修專科學校學力鑑定考試
專業科目(一): 微積分 詳解
解:limx→109√x−√109x−109=limx→109(√x−√109)′(x−109)′=limx→10912√x1=limx→10912√x=12√109,故選(A)
解:g(x)=√x−1093√x−2020⇒{x−109≥0x−2020≠0⇒x∈[109,2020)∪(2020,∞),故選(D)
解:x2−xy−y2=1⇒dydx(x2−xy−y2)=dydx(1)⇒2x−y−xdydx−2ydydx=0⇒2x−y=(x+2y)dydx⇒dydx=2x−yx+2y⇒dydx|(2,1)=4−12+2=34,故選(B)
解:g(x)=x√x2+8⇒g′(x)=√x2+8+x2√x2+8⋅2x=√x2+8+x2√x2+8⇒g′(1)=√9+1√9=3+13=103,故選(D)
解:g(x)=sinxx2+1⇒g′(x)=cosxx2+1−2xsinx(x2+1)2⇒g′(0)=11−0=1,故選(A)
解:limx→∞x109ex=limx→∞(x109)′(ex)′=limx→∞(109x108)′(ex)′=limx→∞(109⋅108x107)′(ex)′=⋯=limx→∞109!ex=0,故選(A)
解:h(x)=x33+x22−2x⇒h′(x)=x2+x−2=(x+2)(x−1)因此h′(x)=0⇒(x+2)(x−1)=0⇒x=1,−2,故選(B)
解:f(x)=2x+x⇒f′(x)=−2x2+1⇒f″(x)=4x3若f′(x)=0⇒2x2=1⇒x=±√2⇒{f″(√2)>0f″(−√2)<0⇒f(√2)為最小值,x∈[1,3],故選(C)
解:g(x)=sinx⇒g′(x)=cosx⇒g″(x)=−sinx⇒g[3](x)=−cosx⇒g[4](x)=g(x)=sinx⇒g[n](0)={(−1)kcosx,n=2k+10,n=2k,k=0,1,2,...⇒g(x)=sinx=∞∑n=0g[n](0)n!xn=11!x−13!x3+15!x5−⋯⇒f(x)=sinx4=11!x4−13!x12+15!x20−⋯⇒{a1=0a4=1≠0a8=0a12=−1/6≠0,故選(C)
解:Ω={(x,y)∣x2+y2≤1}⇒{x=rcosθy=rsinθ,0≤r≤1,0≤θ≤2π⇒∬Ω11+x2+y2dxdy=∫2π0∫10r1+r2drdθ=∫2π0[12ln(1+r2)]|10dθ=∫2π012ln2dθ=12ln2×2π=πln2,故選(B)
解:limn→∞15+25+⋯+n5n6=limn→∞n2(n+1)2(2n2+2n−1)/12n6=limn→∞2n6/12n6=16,故選(B)
解:令{u=cot−1xdv=dx⇒{du=−11+x2dxv=x⇒∫cot−1xdx=xcot−1x+∫x1+x2dx=xcot−1x+12ln(1+x2)⇒∫10cot−1xdx=[xcot−1x+12ln(1+x2)]|10=cot−11+12ln2=π4+ln√2,故選(D)
解:∫2−11x2+7x+12dx=∫2−11(x+3)(x+4)dx=∫2−11x+3−1x+4dx=[ln|x+3|−ln|x+4|]|1−1=ln4−ln5−ln2+ln3=ln45−ln23=ln(45×32)=ln65,故選(C)
解:x=√2tanu⇒dx=√2sec2udu⇒∫√2−√2(2+x2)−3/2dx=∫π/4−π/4(2+2tan2u)−3/2⋅√2sec2udu=√2∫π/4−π/4(2sec2u)−3/2⋅sec2udu=12∫π/4−π/4(sec2u)−1/2du=12∫π/4−π/4cosudu=12[sinu]|π/4−π/4=12×√2=1√2,故選(C)
解:∫π/2−π/211+cosxdx=∫π/2−π/211+2cos2(x/2)−1dx=∫π/2−π/212sec2(x/2)dx=[tan(x/2)]|π/2−π/2=1−(−1)=2,故選(B)
解:∫π/20sin2(x)cos3(x)dx=∫π/20(1−cos2(x))cos3(x)dx=∫π/20cos3(x)−cos5(x)dx=[(sin(x)−13sin3(x))−(sin(x)−23sin3(x)+15sin5(x))]|π/20=[13sin3(x)−15sin5(x)]|π/20=13−15=215⇒f(x)在[0,π2]的平均值=∫π/20f(x)dxπ/2=2/15π/2=415π,故選(A)
解:{x=rcosθy=rsinθ⇒r=4cosθ⇒r2=4rcosθ⇒x2+y2=4x⇒(x−2)2+y2=22⇒{圓心(2,0)圓半徑=2⇒此圓一半在第一象限,面積=4π×12=2π,故選(B)
解:12V=∫π02πxsinxdx=2π[sinx−xcosx]|π0=2π2⇒V=4π2,故選(D)
解:g(s,t)=f(x(s,t),y(s,t))=f(s+t2,et−s2)=(s+t2)et−s2=e(et−s2)ln(s+t2)⇒gt(0,1)=(etln(s+t2)+(et−s2)2ts+t2)e(et−s2)ln(s+t2)⇒gt(0,1)=(e1ln(1)+(e1−0)20+1)e(e1−0)ln(1)=(0+2e)e0=2e,故選(??)註:公布的答案為(C)
解:f(x,y)=1x−xy+8y⇒{fx=−1x2−y=0fy=−x−8y2=0⇒{y=−1x2x=−8y2⇒{x=−1/2y=−4⇒f(−1/2,−4)=−2−2−2=−6,故選(A)
解題僅供參考
哈哈笑死
回覆刪除