Loading [MathJax]/jax/output/HTML-CSS/jax.js

網頁

2021年1月2日 星期六

106年中壢高中教甄-數學詳解

國立中央大學附屬中壢高級中學106學年度第1次教師甄選

一、填充題

A=[1ab01a001]=[100010001]+[0ab00a000]I+B{In=I,nNBk=0,k3,kZB2=[00a2000000]A10=(B+I)10=10k=0C10kBkI10k=2k=0C10kBkI10k=I+10B+45B2=[100010001]+[010a10b0010a000]+[0045a2000000]=[110a45a2+10b0110a001]=[1kapa2+qb01ka001]{k=10q=10p=45k+p+q=65
α,βx2+2x5=0{α+β=2αβ=5α2+β2=(α+β)22αβ=14(α+1)(α+2)(β+1)(β+2)(α3+β3)=[(α+1)(β+1)][(α+2)(β+2)](α3+β3)=(αβ+α+β+1)(αβ+2(α+β)+4)(α+β)(α2αβ+β2)=(52+1)(54+4)(2)(14+5)=(6)(5)(2)(19)=1140


z5+z1=0z5=1z|z5|=|1z||1z|=1{|z|=1|1z|=1{x2+y2=1(x1)2+y2=1z1,z2{z1=cosπ3+isinπ3z2=cosπ3+isinπ3z=12±32i

{448=4(112)=49=2232=62444488=44(1012)=4499=2211232=662444444888=444(10012)=444999=22111232=66622n44n88=n44(10012)=n44n99=22(11)232=(n66)2nk=1ak=6+66++n66=69(9+99++n99)=69(10+102++10nn)=69(10n+1109n)=22710n+169n2027=227[10n+19n10]a27[10n+1+bn+c](a,b,c)=(2,9,10)

{O(0,0)A(4,0)B(0,3)C(2,0){Γ:(x2)2+y2=4L1=AB:y=34x+3L2=BC:y=32x+3ΓL1P(3625,4825)L3=OP:y=43xL2L3Q(1817,2417)¯PQ=5485

36=22×32{a=2m13n1a=2m23n2c=2m33n3{(m1,m2,m3)=(2,2,2),(1,2,2),(0,2,2)(n1,n2,n3)=(2,2,2),(1,2,2),(0,2,2)(m1,m2,m3),(n1,n2,n3)1+3+3=77×7=49
y=x3+x+1(0,1)¯AB=¯BC{B=(0,1)ACLBL:y=mx+1A(a,ma+1){Ay=x3+x+1¯AB=5{ma+1=a3+a+1a2+(ma)2=5{m=a2+1(1)a2(1+m2)=5(2)(1)(2)a6+2a4+2a25=0a6+2a4+2a25=(a21)(a4+3a2+5)=0a2=1m=2L:y=2x+1
{32x2+13y2212x2y2=2xy123y2+32z2214y2z2=yz,32(x2+y2+z2)2xy+yz322xy+yz2xy+yz32
=34ABC(:)=34×315=94153,6,as=(3+6+a)÷2=a+92=s(s3)(s6)(sa)=a+92a+32a329a2=14(81a2)(a29)=9415(81a2)(a29)=81×15a490a2+1944=0{a2=54a2=36a=36(36>6)

{E[A1A6]=E1E[A4A6]=E1E[A2A6]=E2E[A3A6]=E3E[A5A6]=E3;{E3=14((E[A1A6]+1)+(E[A2A6]+1)+(E[A5A6]+1)+1)E2=14((E[A1A6]+1)+(E[A3A6]+1)+(E[A4A6]+1)+(E[A5A6]+1))E1=12((E[A2A6]+1)+(E[A3A6]+1)){E3=14(E1+E2+E3)+1(1)E2=14(E1+E3+E1+E3+4)=12(E1+E3)+1(2)E1=12(E2+E3)+1(3)(2)(1)(3){E3=35E1+2E3=E1235E1+2=E1225E1=4E1=10
(2+3)2016=((2+3)2)1008=(5+26)1008{a=5+26b=526{a+b=10ab=1a2+b2=(a+b)22ab=98an+bn=(a+b)(an1+bn1)ab(an2+bn2)=10(an1+bn1)(an2+bn2)(an+bn)mod10=(an2+bn2)mod10{(a+b)mod10=0(a2+b2)mod10=2=8(a3+b3)mod10=0(a4+b4)mod10=8=2(a5+b5)mod10=0{(a4k+b4k)mod4=2(a4k+1+b4k+1)mod4=0(a4k+2+b4k+2)mod4=8(a4k+3+b4k+3)mod4=0,k=0,1,2,...(a1008+b1008)mod10=(a4252+b4252)mod10=2((5+26)1008+(526)1008)mod10=2(526)100800(5+26)1008119(a,b)=(1,9)
{3x2+y23xy=3+22=(2+1)2a2y2+z2yz=9+62=(6+3)2b2z2+w2+3zw=3+22=(2+1)2a2w2+3x2+3wx=9+62=(6+2)2b2{(3x)2+y2a223xy=32=cos30y2+z2b22yz=12=cos60z2+w2a22zw=32=cos150w2+(3x)2b223wx=12=cos120{30+60+150+120=36030+150=60+120=180
3xyzwab30,60,150,120():=3xz+yw=ab=(2+1)(6+3)=33+26

二、 計算證明題

log0.5(x22x15)>log0.25(x+13)2=log0.5(x+13)x22x15<x+13x23x28<0(x7)(x+4)<04<x<7(1)x22x15>0(x5)(x+3)>0x>5x<3(2)cos2x0π/2±2kπ2xπ/2±2kππ/4±kπxπ/4±kπ(3)(1)(2)(3)5π/4x<37π/4x<7
(1){y2=xy=k(x+1),y2=(yk1)y2+1ky1=0{y1+y2=1/ky1y2=1{A(y21,y1)B(y22,y2)OAOB=y21y22+y1y2=11=0¯OA¯OB(2)OAB=12¯OA¯OB=10y41+y21y42+y22=40(y1y2)4+y21y22(y21+y22)+(y1y2)2=402+(1k2+2)=401k2=36k=±16:y21+y22=(y1+y2)22y1y2=1k2+2
{x+y+z=3x3+y3+z3=3代入 x3+y3+z33xyz=(x+y+z)((x+y+z)23(xy+yz+zx))33xyz=3(93(xy+yz+zx))xyz3(xy+yz+zx)=8xyz3(xy+yz+zx)+9(x+y+z)27=8(x3)(y3)(z3)=8{(x3)+(y3)+(z3)=6(x3)(y3)(z3)=8x,y,z:(x3,y3,z3)=(2,2,2)(1,1,8)(x,y,z)=(4,4,5)((1,1,1))x2+y2+z2=42+42+52=57

2 則留言: