臺中市立文華高級中等學校106學年度第2次教師甄選
一、填充題
解答:f(x)=(x2+2x+3)(x2+2x−2)+5x2+10x+4=(x2+2x)2+(x2+2x)−6+5(x2+2x)+4=(x2+2x)2+6(x2+2x)−2⇒f′(x)=2(x2+2x)(2x+2)+6(2x+2)因此f′(x)=0⇒x=−1⇒f(−1)=1−6−2=−7⇒(α,m)=(−1,−7)解答:log2x+logx8−6=0⇒logxlog2+3log2logx−6=0⇒(logx)2−6log2(logx)+3(log2)2=0⇒{logα+logβ=6log2logαlogβ=3(log2)2⇒(logα)2+(logβ)2=(logα+logβ)2−2logαlogβ=30(log2)2⇒logαβ+logβα=logβlogα+logαlogβ=(logα)2+(logβ)2logαlogβ=30(log2)23(log2)2=10
解答:logB=I+f,其中I是首數,f是尾數⇒logA=(I−1)+(f+log5)⇒A=10I+f+log5−1=B10log5−1=B×510=B2⇒A−B+152=−B2+152=0⇒B=15⇒A=152⇒A+B=152+15=452
解答:(m2+1)x2−4mx+2=0⇒x=2m±√2m2−2m2+1⇒{α=2m+√2m2−2m2+1β=2m−√2m2−2m2+1⇒{α−3β=−4m+4√2m2−2m2+12αβ=4m2+1;由題意知:2αβ=α−3β⇒−m+√2m2−2=1⇒2m2−2=(m+1)2=m2+2m+1⇒m2−2m−3=0⇒m=3(m=−1⇒2x2+4x+2=0⇒x=−1,違反正根)
解答:(1+2x)n=n∑k=0Cnk2kxk⇒x3的係數為Cn323=4n(n−1)(n−2)3⇒1an=34⋅1n(n−1)(n−2)=38(1(n−1)(n−2)−1n(n−1))⇒100∑k=31an=38(12⋅1−13⋅2+13⋅2−14⋅3+⋯+199⋅98−1100⋅99)=38(12−19900)=38⋅49499900=494926400
解答:{全塗:34+3=84一區不塗:4×32×4=144相鄰二區不塗:4×3×4=48對面二區不塗:42×2=32⇒共有84+144+48+32=308種塗法
解答:x+y+z+w=20,1≤x,y,z,w≤6⇒x+y+z+w=16,0≤x,y,z,w≤5(x,y,z,w)排列數(5,5,5,1)4!/3!=4(5,5,4,2)4!/2=12(5,5,3,3)4!/(2!2!)=6(5,4,4,3)4!/2!=12(4,4,4,4)1⇒共有4+12+6+12+1=35種買法
解答:任取5數,a1−a5,滿足{a3=6(a1+⋯+a5)÷5=6a1a2a3a4a5126101113691114681191023681191015671181024671181025671089346710893567945678,共有16組數字,則中位數為6且平均數也為6中位數為6=16C52×C52=425解答:f(x)=|x+22220172x+2018201920172201823x+20192|⇒f(x)的x3係數為6,則abc=−f(0)6;而f(0)=|222201720182019201722018220192|=2|111201720182019201722018220192|=2|111012040358072|=2|11−1010040352|=2(2−0)=4⇒abc=−46=−23註:原題行列式最後一個元素3x+2019應修訂為3x+20192,才能與公布之答案對應
解答:y=3sin2x+4√3sinxcosx−cos2x=3−4cos2x+2√3sin(2x)=3−2(cos(2x)+1)+2√3sin(2x)=2√3sin(2x)−2cos(2x)+1=4(√32sin(2x)−12cos(2x))+1=4sin(2x−π6)+1⇒當2x−π6=3π2,即x=56π時y有最小值−4+1=−3;因此(a,m)=(56,−3)
解答:
sinθ=45⇒cosθ=35⇒cos2θ=cos2θ−sin2θ=−725假設∠POX=α,則{∠XOP1=α,其中P1為P以¯OX的對稱點∠P2OY=θ−α,其中P2為P以¯OY的對稱點;因此∠P1OP2=(θ−α)+θ+α=2θ⇒cos∠P1OP2=102+102−¯P1P222×10×10⇒¯P1P2=10√2−2cos2θ=10√2+1425=10√6425=16△PQR周長=¯PR+¯PQ+¯QR=¯P2R+¯P1Q+¯QR=¯P1P2=16解答:
圓C:(x−7)2+(y+4)2=5⇒{圓心O(7,−4)半徑r=√5;A(5,2)與y軸的對稱點A′,則A′=(−5,2),¯A′O與y軸的交點即為P、與圓C的交點即為Q;因此¯PA+¯PQ=¯PA′+¯PQ=¯A′O−r=√122+62−√5=5√5
解答:
{⇀PA+2⇀PB+3⇀PC=⇀CA=⇀CP+⇀PA⇀QA+2⇀QB+3⇀QC=2⇀AB=2⇀AQ+2⇀QB⇀RA+2⇀RB+3⇀RC=3⇀BC=3⇀BR+3⇀RC⇒{⇀PB+2⇀PC=0⇀QA+⇀QC=0⇀RA+5⇀RB=0⇒{|⇀PB|=2|⇀PC||⇀QA|=|⇀QC||⇀RA|=5|⇀RB|⇒{△AQR:△ABC=1⋅5:2⋅6=5:12△BPR:△ABC=1⋅2:6⋅3=1:9△CPQ:△ABC=1⋅1:2⋅3=1:6⇒△ABC△PQR=11−512−19−16=11−2536=3611解答:
{0≤α≤π/3π/2≤β≤3π/4⇒{0≤sinα≤√3/2−1/√2≤cosβ≤0因此{x=5sinα+cosβy=4cosβ+sinα⇒{sinα=(4x−y)/19cosβ=(5y−x)/19⇒{0≤(4x−y)/19≤√3/2−1/√2≤(5y−x)/19≤0令{L1:4x=yL2:4x−y=19√3/2L3:x=5yL4:5y−x=−19/√2⇒{d=dist(L1,L2)=19√32√17L1,L2與L3,L4分別交於P(0,0),Q(−1/√2),R,S⇒¯PQ=√17√2⇒PQRS面積=dׯPQ=19√32√17×√17√2=19√64解答:

邊長為1的正六邊形,任取3頂點的三角形面積有三種尺寸,如上圖;{面積為√3/4的有6個面積為√3/2的有12個面積為3√3/4的有2個⇒期望值√34×620+√32×1220+3√34×220=920√3
解答:f(x)=x4−2x3+3x−(∫x2(3t3−7t2+5t−1)dt)−6⇒{f(2)=16−16+6−0−6=0f′(x)=4x3−6x2+3−(3x3−7x2+5x−1)⇒f′(2)=11−(5)=6lim
解答:f(x)=\sqrt{3-x} +\sqrt{5x-4} \Rightarrow f'(x)={-1\over 2\sqrt{3-x}} +{5\over 2\sqrt{5x-4}} ={5\sqrt{3-x}-\sqrt{5x-4}\over 2\sqrt{3-x}\cdot \sqrt{5x-4}}\\ f'(x)=0 \Rightarrow 5\sqrt{3-x}=\sqrt{5x-4} \Rightarrow 75-25x=5x-4 \Rightarrow x={79\over 30} \\ \Rightarrow f({79\over 30}) =\sqrt{3-{79\over 30}} +\sqrt{{79\over 6}-4} =\sqrt{11\over 30} +\sqrt {55\over 6} =\sqrt{11\over 30} +\ {5\sqrt{11}\over \sqrt{30}} ={6\sqrt{11} \over \sqrt{30}} = \bbox[red,2pt]{\sqrt{330}\over 5}
解答:A=\begin{bmatrix} 1 & -5 \\ -5 & 1\end{bmatrix} =P\begin{bmatrix} 6 & 0\\ 0 & -4\end{bmatrix}P^{-1},其中P=\begin{bmatrix} 1 & 1 \\ -1 & 1\end{bmatrix},P^{-1}=\begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2\end{bmatrix}\\ \Rightarrow A^n= \begin{bmatrix} 1 & 1 \\ -1 & 1\end{bmatrix}\begin{bmatrix} 6^n & 0\\ 0 & (-4)^n\end{bmatrix} \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2\end{bmatrix} =\begin{bmatrix} 6^n & (-4)^n\\ -6^n & (-4)^n\end{bmatrix} \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2\end{bmatrix} \\ =\begin{bmatrix} (6^n+(-4)^n)/2 & (-6^n+(-4)^n)/2\\ (-6^n +(-4)^n)/2& (6^n+(-4)^n)/2\end{bmatrix} =\begin{bmatrix} a & b \\ c& d\end{bmatrix} \Rightarrow b=\bbox[red,2pt]{-6^n+(-4)^n\over 2}
解答:\overline{AB}=\sqrt{9^2+12^2} =15,令\overline{BP}=a,則\overline{PA}=54-15-a=39-a \\ \Rightarrow \triangle ABP = \sqrt{s(s-a)(s-39+a)(s-15)},s=54/2=27 \\\Rightarrow \triangle ABP=\sqrt{27(27-a)(a-12)(12)}\\ 令f(a)=(27-a)(a-12) =-a^2 +39a -324 \Rightarrow f(39/2)為極大值\\ \Rightarrow \triangle ABP最大值=\sqrt{ 27(27-{39\over 2})({39\over 2}-12)(12)} =\sqrt{27\cdot {15\over 2} \cdot {15\over 2}\cdot 12} =18\times {15\over 2}=\bbox[red,2pt]{135}
解答:方程式a^{2|x|}-8x^2 +5|x|-1 對稱y軸,因此\alpha+\beta =0 \Rightarrow \alpha-2\beta= \alpha+2\alpha=3\alpha={3\over 4} \\ \Rightarrow \alpha={1\over 4} \Rightarrow a^{1/2}-{1\over 2}+{5\over 4}=1 \Rightarrow \sqrt a={1\over 4} \Rightarrow a=\bbox[red, 2pt]{1\over 16}
解答:f(x)=x4−2x3+3x−(∫x2(3t3−7t2+5t−1)dt)−6⇒{f(2)=16−16+6−0−6=0f′(x)=4x3−6x2+3−(3x3−7x2+5x−1)⇒f′(2)=11−(5)=6lim
解答:f(x)=\sqrt{3-x} +\sqrt{5x-4} \Rightarrow f'(x)={-1\over 2\sqrt{3-x}} +{5\over 2\sqrt{5x-4}} ={5\sqrt{3-x}-\sqrt{5x-4}\over 2\sqrt{3-x}\cdot \sqrt{5x-4}}\\ f'(x)=0 \Rightarrow 5\sqrt{3-x}=\sqrt{5x-4} \Rightarrow 75-25x=5x-4 \Rightarrow x={79\over 30} \\ \Rightarrow f({79\over 30}) =\sqrt{3-{79\over 30}} +\sqrt{{79\over 6}-4} =\sqrt{11\over 30} +\sqrt {55\over 6} =\sqrt{11\over 30} +\ {5\sqrt{11}\over \sqrt{30}} ={6\sqrt{11} \over \sqrt{30}} = \bbox[red,2pt]{\sqrt{330}\over 5}
解答:
\triangle ABC 三邊長\cases{\overline{BC}= x\\ \overline{AC}= y\\ \overline{AB}= z},及邊長上的高\cases{\overline{AF}=5\\ \overline{BE}=6\\ \overline{CD}=10},如上圖;\\則x,y,z滿足題意\cases{x= \sqrt{y^2-25}+ \sqrt{z^2-25} \\ y= \sqrt{x^2-36}+ \sqrt{z^2-36} \\z= \sqrt{x^2-100}+ \sqrt{y^2-100} };\\ \triangle ABC面積= {1\over 2}\cdot 5\cdot x= {1\over 2}\cdot6\cdot y= {1\over 2}\cdot10 \cdot z =k \Rightarrow \cases{x=2k/5\\ y=k/3\\ z=k/5}\\ 令s= (x+y+z)/2 = 7k/15,則\triangle ABC面積 = \sqrt{s(s-x)(s-y)(x-z)} \\=\sqrt{{7k\over 15} \cdot {k\over 15} \cdot {2k\over 15} \cdot {4k\over 15} \cdot } ={2\sqrt{14} \over 15^2}k^2 =k \Rightarrow k={15^2 \over 2\sqrt{14}} \Rightarrow x+2y+4z= {2k\over 5}+ {2k\over 3}+ {4k\over 5} \\={28 \over 15}k ={28 \over 15}\cdot {15^2 \over 2\sqrt{14}} = \bbox[red,2pt]{15\sqrt{14}}解答:A=\begin{bmatrix} 1 & -5 \\ -5 & 1\end{bmatrix} =P\begin{bmatrix} 6 & 0\\ 0 & -4\end{bmatrix}P^{-1},其中P=\begin{bmatrix} 1 & 1 \\ -1 & 1\end{bmatrix},P^{-1}=\begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2\end{bmatrix}\\ \Rightarrow A^n= \begin{bmatrix} 1 & 1 \\ -1 & 1\end{bmatrix}\begin{bmatrix} 6^n & 0\\ 0 & (-4)^n\end{bmatrix} \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2\end{bmatrix} =\begin{bmatrix} 6^n & (-4)^n\\ -6^n & (-4)^n\end{bmatrix} \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2\end{bmatrix} \\ =\begin{bmatrix} (6^n+(-4)^n)/2 & (-6^n+(-4)^n)/2\\ (-6^n +(-4)^n)/2& (6^n+(-4)^n)/2\end{bmatrix} =\begin{bmatrix} a & b \\ c& d\end{bmatrix} \Rightarrow b=\bbox[red,2pt]{-6^n+(-4)^n\over 2}
解答:\overline{AB}=\sqrt{9^2+12^2} =15,令\overline{BP}=a,則\overline{PA}=54-15-a=39-a \\ \Rightarrow \triangle ABP = \sqrt{s(s-a)(s-39+a)(s-15)},s=54/2=27 \\\Rightarrow \triangle ABP=\sqrt{27(27-a)(a-12)(12)}\\ 令f(a)=(27-a)(a-12) =-a^2 +39a -324 \Rightarrow f(39/2)為極大值\\ \Rightarrow \triangle ABP最大值=\sqrt{ 27(27-{39\over 2})({39\over 2}-12)(12)} =\sqrt{27\cdot {15\over 2} \cdot {15\over 2}\cdot 12} =18\times {15\over 2}=\bbox[red,2pt]{135}
解答:方程式a^{2|x|}-8x^2 +5|x|-1 對稱y軸,因此\alpha+\beta =0 \Rightarrow \alpha-2\beta= \alpha+2\alpha=3\alpha={3\over 4} \\ \Rightarrow \alpha={1\over 4} \Rightarrow a^{1/2}-{1\over 2}+{5\over 4}=1 \Rightarrow \sqrt a={1\over 4} \Rightarrow a=\bbox[red, 2pt]{1\over 16}
您好:請問第8題的第一組答案1,2,6,7,8是不是不符合?謝謝
回覆刪除把1,2,6,7,8換成4,5,6,7,8就對了,謝謝提醒!! 已修訂
刪除作者已經移除這則留言。
回覆刪除