Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

網頁

2021年3月15日 星期一

106年台中文華高中教甄-數學詳解

臺中市立文華高級中等學校106學年度第2次教師甄選

一、填充題

解答f(x)=(x2+2x+3)(x2+2x2)+5x2+10x+4=(x2+2x)2+(x2+2x)6+5(x2+2x)+4=(x2+2x)2+6(x2+2x)2f(x)=2(x2+2x)(2x+2)+6(2x+2)f(x)=0x=1f(1)=162=7(α,m)=(1,7)
解答log2x+logx86=0logxlog2+3log2logx6=0(logx)26log2(logx)+3(log2)2=0{logα+logβ=6log2logαlogβ=3(log2)2(logα)2+(logβ)2=(logα+logβ)22logαlogβ=30(log2)2logαβ+logβα=logβlogα+logαlogβ=(logα)2+(logβ)2logαlogβ=30(log2)23(log2)2=10
解答logB=I+fIflogA=(I1)+(f+log5)A=10I+f+log51=B10log51=B×510=B2AB+152=B2+152=0B=15A=152A+B=152+15=452
解答(m2+1)x24mx+2=0x=2m±2m22m2+1{α=2m+2m22m2+1β=2m2m22m2+1{α3β=4m+42m22m2+12αβ=4m2+1:2αβ=α3βm+2m22=12m22=(m+1)2=m2+2m+1m22m3=0m=3(m=12x2+4x+2=0x=1)
解答(1+2x)n=nk=0Cnk2kxkx3Cn323=4n(n1)(n2)31an=341n(n1)(n2)=38(1(n1)(n2)1n(n1))100k=31an=38(121132+132143++19998110099)=38(1219900)=3849499900=494926400
解答{:34+3=84:4×32×4=144:4×3×4=48:42×2=3284+144+48+32=308
解答x+y+z+w=20,1x,y,z,w6x+y+z+w=16,0x,y,z,w5(x,y,z,w)(5,5,5,1)4!/3!=4(5,5,4,2)4!/2=12(5,5,3,3)4!/(2!2!)=6(5,4,4,3)4!/2!=12(4,4,4,4)14+12+6+12+1=35
解答5a1a5滿{a3=6(a1++a5)÷5=6a1a2a3a4a512610111369111468119102368119101567118102467118102567108934671089356794567816666=16C52×C52=425解答f(x)=|x+22220172x+2018201920172201823x+20192|f(x)x36abc=f(0)6f(0)=|222201720182019201722018220192|=2|111201720182019201722018220192|=2|111012040358072|=2|111010040352|=2(20)=4abc=46=23:3x+20193x+20192
解答y=3sin2x+43sinxcosxcos2x=34cos2x+23sin(2x)=32(cos(2x)+1)+23sin(2x)=23sin(2x)2cos(2x)+1=4(32sin(2x)12cos(2x))+1=4sin(2xπ6)+12xπ6=3π2x=56πy4+1=3(a,m)=(56,3)
解答
sinθ=45cosθ=35cos2θ=cos2θsin2θ=725POX=α{XOP1=α,P1P¯OXP2OY=θα,P2P¯OYP1OP2=(θα)+θ+α=2θcosP1OP2=102+102¯P1P222×10×10¯P1P2=1022cos2θ=102+1425=106425=16PQR=¯PR+¯PQ+¯QR=¯P2R+¯P1Q+¯QR=¯P1P2=16


解答

C:(x7)2+(y+4)2=5{O(7,4)r=5A(5,2)yAA=(5,2)¯AOyPCQ¯PA+¯PQ=¯PA+¯PQ=¯AOr=122+625=55

解答
{PA+2PB+3PC=CA=CP+PAQA+2QB+3QC=2AB=2AQ+2QBRA+2RB+3RC=3BC=3BR+3RC{PB+2PC=0QA+QC=0RA+5RB=0{|PB|=2|PC||QA|=|QC||RA|=5|RB|{AQR:ABC=15:26=5:12BPR:ABC=12:63=1:9CPQ:ABC=11:23=1:6ABCPQR=115121916=112536=3611
解答
{0απ/3π/2β3π/4{0sinα3/21/2cosβ0{x=5sinα+cosβy=4cosβ+sinα{sinα=(4xy)/19cosβ=(5yx)/19{0(4xy)/193/21/2(5yx)/190{L1:4x=yL2:4xy=193/2L3:x=5yL4:5yx=19/2{d=dist(L1,L2)=193217L1,L2L3,L4P(0,0),Q(1/2),R,S¯PQ=172PQRS=dׯPQ=193217×172=1964


解答
13{3/463/21233/4234×620+32×1220+334×220=9203
解答f(x)=x42x3+3x(x2(3t37t2+5t1)dt)6{f(2)=1616+606=0f(x)=4x36x2+3(3x37x2+5x1)f(2)=11(5)=6lim
解答f(x)=\sqrt{3-x} +\sqrt{5x-4} \Rightarrow f'(x)={-1\over 2\sqrt{3-x}} +{5\over 2\sqrt{5x-4}} ={5\sqrt{3-x}-\sqrt{5x-4}\over 2\sqrt{3-x}\cdot \sqrt{5x-4}}\\ f'(x)=0 \Rightarrow 5\sqrt{3-x}=\sqrt{5x-4} \Rightarrow 75-25x=5x-4 \Rightarrow x={79\over 30} \\ \Rightarrow f({79\over 30}) =\sqrt{3-{79\over 30}} +\sqrt{{79\over 6}-4} =\sqrt{11\over 30} +\sqrt {55\over 6}  =\sqrt{11\over 30} +\ {5\sqrt{11}\over \sqrt{30}} ={6\sqrt{11} \over \sqrt{30}} = \bbox[red,2pt]{\sqrt{330}\over 5}
解答
\triangle ABC 三邊長\cases{\overline{BC}= x\\ \overline{AC}= y\\ \overline{AB}= z},及邊長上的高\cases{\overline{AF}=5\\ \overline{BE}=6\\ \overline{CD}=10},如上圖;\\則x,y,z滿足題意\cases{x= \sqrt{y^2-25}+ \sqrt{z^2-25} \\ y= \sqrt{x^2-36}+ \sqrt{z^2-36} \\z= \sqrt{x^2-100}+ \sqrt{y^2-100} };\\ \triangle ABC面積= {1\over 2}\cdot 5\cdot x= {1\over 2}\cdot6\cdot y= {1\over 2}\cdot10 \cdot z =k \Rightarrow \cases{x=2k/5\\ y=k/3\\ z=k/5}\\ 令s= (x+y+z)/2 = 7k/15,則\triangle ABC面積 = \sqrt{s(s-x)(s-y)(x-z)} \\=\sqrt{{7k\over 15} \cdot {k\over 15} \cdot {2k\over 15} \cdot {4k\over 15} \cdot }  ={2\sqrt{14} \over 15^2}k^2 =k \Rightarrow k={15^2 \over 2\sqrt{14}} \Rightarrow x+2y+4z= {2k\over 5}+ {2k\over 3}+ {4k\over 5} \\={28 \over 15}k ={28 \over 15}\cdot {15^2 \over 2\sqrt{14}} = \bbox[red,2pt]{15\sqrt{14}}


解答A=\begin{bmatrix} 1 & -5 \\ -5 & 1\end{bmatrix} =P\begin{bmatrix} 6 & 0\\ 0 & -4\end{bmatrix}P^{-1},其中P=\begin{bmatrix} 1 & 1 \\ -1 & 1\end{bmatrix},P^{-1}=\begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2\end{bmatrix}\\ \Rightarrow A^n= \begin{bmatrix} 1 & 1 \\ -1 & 1\end{bmatrix}\begin{bmatrix} 6^n & 0\\ 0 & (-4)^n\end{bmatrix} \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2\end{bmatrix} =\begin{bmatrix} 6^n & (-4)^n\\ -6^n & (-4)^n\end{bmatrix} \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2\end{bmatrix} \\ =\begin{bmatrix} (6^n+(-4)^n)/2 & (-6^n+(-4)^n)/2\\ (-6^n +(-4)^n)/2& (6^n+(-4)^n)/2\end{bmatrix} =\begin{bmatrix} a & b \\ c& d\end{bmatrix} \Rightarrow b=\bbox[red,2pt]{-6^n+(-4)^n\over 2}
解答\overline{AB}=\sqrt{9^2+12^2} =15,令\overline{BP}=a,則\overline{PA}=54-15-a=39-a \\ \Rightarrow \triangle ABP = \sqrt{s(s-a)(s-39+a)(s-15)},s=54/2=27 \\\Rightarrow \triangle ABP=\sqrt{27(27-a)(a-12)(12)}\\ 令f(a)=(27-a)(a-12) =-a^2 +39a -324 \Rightarrow f(39/2)為極大值\\ \Rightarrow \triangle ABP最大值=\sqrt{ 27(27-{39\over 2})({39\over 2}-12)(12)} =\sqrt{27\cdot {15\over 2} \cdot {15\over 2}\cdot 12} =18\times {15\over 2}=\bbox[red,2pt]{135}
解答方程式a^{2|x|}-8x^2 +5|x|-1 對稱y軸,因此\alpha+\beta =0 \Rightarrow \alpha-2\beta= \alpha+2\alpha=3\alpha={3\over 4} \\ \Rightarrow \alpha={1\over 4} \Rightarrow a^{1/2}-{1\over 2}+{5\over 4}=1 \Rightarrow \sqrt a={1\over 4} \Rightarrow a=\bbox[red, 2pt]{1\over 16}




3 則留言:

  1. 您好:請問第8題的第一組答案1,2,6,7,8是不是不符合?謝謝

    回覆刪除
    回覆
    1. 把1,2,6,7,8換成4,5,6,7,8就對了,謝謝提醒!! 已修訂

      刪除