Loading [MathJax]/jax/element/mml/optable/MathOperators.js

網頁

2021年6月7日 星期一

105年竹北高中教甄-數學詳解

 國立竹北高中105學年度第1學期第1次教師甄選

壹: 填充題

解答

{z1=az2=aiz3=az4=ai,aRz2z1z3z1=aia2a=12+12i
解答1p+13q=123p+1q=361p+1p+1p+1q441p3q36441p3q941p3q3log1/3p+log1/3q=3log3plog3q=log3(p3q)=log31p3qlog394=83log1/3p+log1/3q8
解答
(x1)2+(2x4)2+(x1)2+2x=¯PA+¯PB{A(1,4)B(1,0)Py=2xABy=2x¯PA+¯PB=¯AB=4
解答
¯PQ=3{P¯BCQ¯OAABC¯OA=¯OB=¯OCP¯BCPQB:¯BQ=22+3=7{BQA:¯QA=427=3BQO:¯QO=a27¯OA=a=¯QA+¯QO=3+a27(a3)2=a276a=16a=83
解答f(x)=(x1)20=(x2+1)Q(x)+px+rf(i)=(i1)20=pi+r{r=f(i)p=f(i)f(i)=((i1)2)10=(2i)10=(2)10i10=1024(1)=1024(p,r)=(0,1024)
解答
¯AH¯BCAHBC=0(12AB+32AC)(AB+AC)=012|AB|22ABAC+32|AC|2=02522ABAC+272=0ABAC=13ABAC=|AB||AC|cosAcosA=1353=1315sinA=21415:cosA=¯AB2+¯AC2¯BC22ׯABׯAC1315=25+9¯BC230¯BC=22:¯BCsinA=2RR=22214/1512=1527=R2π=22528π
解答α+β+γ=πα2+β2+γ2=π2cotα2=cot(π2β2γ2)=tan(β2+γ2)=tan(β/2)+tan(γ/2)1tan(β/2)tan(γ/2)=1/cot(β/2)+1/cot(γ/2)11/(cot(β/2)cot(γ/2))=cotβ2+cotγ2cotβ2cotγ21cotα2cotβ2cotγ2cotα2=cotβ2+cotγ2cotα2cotβ2cotγ2=cotα2+cotβ2+cotγ2=3cotβ2(
解答

假設F_1(\sqrt 5,0)對稱L的對稱點為F_1'(5,5-\sqrt 5),則\overline{F_2F_1'}與L的交點P即為橢圓的切點;\\也就是\overline{F_2F_1'} = \overline{PF_2}+\overline{PF_1}=2a \Rightarrow \sqrt{(5+\sqrt 5)^2 +(5-\sqrt 5)^2} =2\sqrt{15} \Rightarrow a=\sqrt{15}\\ \Rightarrow b^2=a^2-c^2= 15-5=10 \Rightarrow 橢圓方程式:\bbox[red, 2pt]{{x^2 \over 15}+ {y^2\over 10}=1}
解答令a=\sqrt{\log_2 x-1} \Rightarrow \log_2 x=a^2+1 \Rightarrow \log_{1/2}x^3 =-\log_2 x^3 =-3\log_2 x=-3(a^2+1)\\ 因此原式:a+ {1\over 2}\cdot (-3a^2-3)+2 \gt 0 \Rightarrow 3a^2-2a-1 \lt 0 \Rightarrow (3a+1)(a-1)\lt 0\\ \Rightarrow -{1\over 3}\lt a\lt 1  \Rightarrow 0\le \sqrt{\log_2 x-1} \lt 1 \Rightarrow 0\le \log_2 x-1 \lt 1 \Rightarrow 1\le \log_2 x \lt 2\\ \Rightarrow \bbox[red, 2pt]{2\le x\lt 4}
解答

\cases{C:y^2=ax\\ L:py=x} \Rightarrow 交點A(ap^2,ap) \\\Rightarrow 所圍區域(上圖著色區域)繞x軸旋轉體積= \pi\int_0^{ap^2} (ax-{1\over p^2}x^2)\;dx \\=\pi \left. \left[ {1\over 2}ax^2- {1\over 3p^2}x^3\right]\right|_0^{ap^2} =\left({1\over 2}a^3p^4-{1\over 3}a^3p^4 \right)\pi =\bbox[red, 2pt]{a^3p^4\pi\over 6}
解答


圓x^2+y^2-4x-7y+10=0 \Rightarrow (x-2)^2 +(y-{7\over 2})^2={25\over 4} \Rightarrow \cases{圓心C(2,{7\over 2})\\ 半徑r={5\over 2}} \\ \Rightarrow 圓在第一象限及第二象限,並與y軸交於\cases{P(0,5)\\ Q(0,2)};\\而直線L:y=m(x-3)必經A(3,0), 因此L斜率介於\overleftrightarrow{AP} 與\overleftrightarrow{BP}之間,即符合所求;\\由於\cases{\overleftrightarrow{AP} :y=-{5\over 3}x+5\\ \overleftrightarrow{BP}: y=-{2\over 3}x+2} \Rightarrow \bbox[red, 2pt]{-{5\over 3} \lt m\lt -{2\over 3}}
解答
圓:(x-5)^2+(y-12)^2=20^2\cases{與x軸交於\cases{P(21,0)\\ Q(-11,0)} \\與y軸交於\cases{R(0,12+5\sqrt{15})\\ S(0,12-5\sqrt{15})} }\\ 取\cases{A在x軸上,且\overline{OQ}=\overline{AP} \\C在y軸上,且\overline{OS}=\overline{CR}}\quad,則矩形OABC面積即為所求\\,也就是24\times 10=\bbox[red,2pt]{240}

貳: 非選擇題

解答由於試題未附z-表,只能以z=3來推估P(-3\le X\le 3)=99.7\%\\ 因此誤差e \le 3\% \Rightarrow 3 \cdot \sqrt{0.5(1-0.5)\over n} \le 0.03 \Rightarrow {0.5\over \sqrt n} \le 0.01 \Rightarrow 50\le \sqrt n \Rightarrow n=\bbox[red, 2pt]{2500}\\事實上,P(|X|\le z)=99.7\% \Rightarrow z=2.967,依此來計算,n \ge   2445.3 \Rightarrow n=2446
解答x^5-1=0 \Rightarrow (x-1)(1+x+x^2 +x^3+x^4)=0 \\\Rightarrow 令\omega,\omega^2,\omega^3,\omega^4為1+x+x^2 +x^3+x^4=0 之四根,其中\omega = e^{i2\pi/5} \\ \Rightarrow f(x)=1+x+x^2 +x^3+x^4 =(x-\omega)(x-\omega^2) (x-\omega^3)(x-\omega^4) \\ \Rightarrow f(1)=1+1+1+1+1 =(1-\omega)(1-\omega^2)(1-\omega^3)(1-\omega^4) \\\Rightarrow (1-\omega)(1-\omega^2)(1-\omega^3)(1-\omega^4)=5\\令\cases{A(1)\\ B(\omega)\\ C(\omega^2)\\ D(\omega^3)\\ E(\omega^4)},\text{where }\omega^k =e^{i2k\pi/5}\\ \Rightarrow \overline{AB}\times \overline{AC}\times \overline{AD}\times \overline{AE}=|\omega-1| \cdot|\omega^2-1|\cdot |\omega^3-1|\cdot |\omega^4-1| \\ =  |(1-\omega)(1-\omega^2)(1-\omega^3) (1-\omega^4)|= \bbox[red, 2pt]{5}
解答f(x)=x^4-4p^3x+12 \Rightarrow f'(x)=4x^3-4p^3=0 \Rightarrow x=p\\ f(x)\gt 0 \Rightarrow f(p) \gt 0 \Rightarrow p^4-4p^4+12 \gt 0 \Rightarrow 3p^4 \lt 12 \Rightarrow p^4 \lt 4\\ \Rightarrow p^2\lt 2 \Rightarrow \bbox[red,2pt]{-\sqrt 2 \lt p\lt \sqrt 2}解答
(1)\begin{array}{} a_{2n}-a_{2n-1} & = & ({1\over 5})^{2n}\\ a_{2n-1}-a_{2n-2} &= & ({1\over 5})^{2n-1}-({1\over 3})^{2n-1} \\ a_{2n-2}-a_{2n-3} & = & ({1\over 5})^{2n-2} \\ a_{2n-3}-a_{2n-4} &= & ({1\over 5})^{2n-3}-({1\over 3})^{2n-3} \\\cdots & &\dots\\ a_2-a_1 & = &({1\over 5})^{2} \\ a_1-a_0& = & {1\over 5}-{1\over 3}\\\hline a_{2n}-a_0&=&({1\over 5}+{1\over 5^2} +\cdots {1\over 5^{2n}})-({1\over 3}+{1\over 3^3}+\cdots +{1\over 3^{2n-1}}) \end{array}\\ \Rightarrow \lim_{n\to\infty} a_{2n}={1/5\over 1-1/5}-{1/3\over 1-1/9}={1\over 4}-{3\over 8} =\bbox[red, 2pt]{-{1\over 8}}(2)\begin{array}{} a_{2n+2}-a_{2n+1} & = & ({1\over 5})^{2n+2}\\a_{2n+1}-a_{2n} & = & ({1\over 5})^{2n+1}-({1\over 3})^{2n+1}   \\\hline a_{2n+2}-a_{2n} & = & {6\over 5}({1\over 5})^{2n+1}-({1\over 3})^{2n+1}   \end{array}\\ \Rightarrow  a_{2n+2}-a_{2n}={{6\over 5}\cdot 3^{2n+1}-5^{2n+1}\over 15^{2n+1}}\\ 當n=0時,a_2-a_0=({18\over 5}-5)/15 \lt 0,成立;\\假設n=k時亦成立,即a_{2k+2}-a_{2k}\lt 0 \Rightarrow {{6\over 5}\cdot 3^{2k+1}-5^{2k+1}\over 15^{2k+1}} \lt 0 \Rightarrow {6\over 5}\cdot 3^{2k+1}\lt 5^{2k+1}\\當n=k+1時,a_{2k+4}-a_{2k+2}= {{6\over 5}\cdot 3^{2k+3}-5^{2k+3}\over 15^{2k+3}}\\ 由於{6\over 5}\cdot 3^{2k+1}\lt 5^{2k+1} \Rightarrow  {6\over 5}\cdot 3^{2k+3}\lt 3^2\cdot 5^{2k+1}\lt 5^2\cdot 5^{2k+1}=5^{2k+3}\\ \Rightarrow {6\over 5}\cdot 3^{2k+3}-5^{2k+3}\lt 0 \Rightarrow a_{2k+4}-a_{2k+2}\lt 0,即n=k+1時亦成立\\由歸納法知:a_{2n+2}-a_{2n} \lt 0,\bbox[red, 2pt]{故得證}\\因此a_{2n} \lt a_{2n-2} \lt \cdots \lt a_2 \lt a_0=0 \Rightarrow a_{2n}\lt 0;\\ 再由\lim_{n\to \infty}a_{2n}=-{1\over 8},可得-{1\over 8}\le a_n \lt 0,n\in \mathbb{N}
解答
(1)C^n_k = C^{n-1}_k + C^{n-1}_{k-1} = \left( C^{n-2}_k +C^{n-2}_{k-1}\right) +\left(C^{n-2}_{k-1} +C^{n-2}_{k-2} \right) = C^{n-2}_{k} + 2C^{n-2}_{k-1} +C^{n-2}_{k-2},\bbox[red, 2pt]{故得證}(2)從n個人中挑出k個的方法可區分成三種情況:\\ 甲乙都沒被選中:C^{n-2}_{k}\\ 甲乙其中一人被選中:C^2_1C^{n-2}_{k-1}=2C^{n-2}_{k-1}\\ 甲乙都被選中:C^{n-2}_{k-2}\\ 因此n個人選k個的方法數C^n_k =C^{n-2}_{k} + 2C^{n-2}_{k-1} +C^{n-2}_{k-2}
======================== END=============
解題僅供參考,其他教甄試題及詳解

2 則留言:

  1. 您好:請問非選第1題:有手機的學生比例為什麼是0.5呢?謝謝

    回覆刪除
    回覆
    1. 當p=0.5時, p(1-p)最大,求「至少」所以取p=0.5

      刪除