108年公務人員高等考試三級考試
類 科 :核子工程
科 目:微積分與微分方程
科 目:微積分與微分方程
解:
\begin{cases}T(t):在時間t的溫度\\V(t):在時間t的水量\end{cases} \Rightarrow \begin{cases}T(0)=25\\V(0)=400 \end{cases} \Rightarrow \begin{cases}T'(t)=\sqrt{T}/V(t)\\V(t)=400+10t \end{cases} \Rightarrow T'(t)={\sqrt{T}\over 400+10t}\\ \Rightarrow {dT\over dt} ={\sqrt{T}\over 400+10t} \Rightarrow \int{1\over \sqrt{T}}dT =\int{1\over 400+10t}dt \Rightarrow 2\sqrt{T}={1\over 10}\ln{(400+10t)}+C \\ T(0)=25\Rightarrow 2\sqrt{25}={1\over 10}\ln{(400)}+C \Rightarrow C=10-\frac{1}{5}\ln{20}\\ \Rightarrow 2\sqrt{T}={1\over 10}\ln{(400+10t)}+10-\frac{1}{5}\ln{20}\\ t=10 \Rightarrow 2\sqrt{T}={1\over 10}\ln{(500)}+10-\frac{1}{5}\ln{20} = {1\over 10}\ln{(500)}+10-\frac{1}{10}\ln{400} \\ ={1\over 10}\ln{(5/4)}+10\Rightarrow \sqrt{T}={1\over 20}\ln{(5/4)}+5 \Rightarrow T=\bbox[red,2pt]{\left( 5+{1\over 20}\ln{(5/4)} \right)^2}
解:
y=x^2/4\Rightarrow \begin{cases}x=t\\y=t^2/4\end{cases}\Rightarrow \begin{cases}dx=dt\\dy=tdt/2\end{cases} \Rightarrow \int_1^2{\sqrt{(dx/dt)^2+(dy/dt)^2}\,dt}=\int_1^2{\sqrt{1+(t^2/4)}\,dt}\\=\left.\left[ \ln{ \left(\sqrt{1+t^2/4}+t/2 \right)} \right]\right|_1^2 =\ln{\left(\sqrt{2}+1\right)}-\ln{\left(\sqrt{5/4}+1/2 \right)}=\bbox[red,2pt]{\ln{\left(\left(\sqrt{2}+1 \right)\left(\sqrt{5}-1 \right)/2\right)}}
解:
\left( x^2+(\sqrt{2}y)^2\right)\left(2^2+(1/\sqrt{2})^2 \right)\ge \left(2x+y \right)^2 \Rightarrow \left( x^2+2y^2\right)\left(4+1/2 \right)\ge \left(2x+y \right)^2 \Rightarrow 10\cdot \frac{9}{2}\ge \left(2x+y \right)^2\\ \Rightarrow 45\ge (2x+y)^2 \Rightarrow \sqrt{45}\ge 2x+y\ge -\sqrt{45}\Rightarrow 3\sqrt{5}+10\ge 2x+y+10\ge 10-3\sqrt{5}\\ \Rightarrow 2x+y+10的最小值為\bbox[red,2pt]{10-3\sqrt{5}}
解:
區域S如上圖,可以拆成兩上下兩塊S_1與S_2,其中S_2是一個矩形,該矩形繞Y軸旋轉可得一個圓柱體。該圓柱體的半徑為\overline{FC}=\overline{AB}=1,高為\overline{BC}=\sqrt{3},因此體積為1^2\pi\times \sqrt{3}=\sqrt{3}\pi;
S_1繞Y軸旋轉所得體積為\int_\sqrt{3}^2{(4-y^2)^2\pi\,dy} = \pi\int_\sqrt{3}^2{\left( y^4-8y^2+16\right) \,dy}\\ = \pi\left. \left[ 16y-\frac{8}{3}y^3+\frac{1}{5}y^5 \right] \right|_\sqrt{3}^2 = \left( \frac{256}{15}-\frac{49}{5}\sqrt{3}\right)\pi\\ \Rightarrow S繞Y軸旋轉所得體積為\sqrt{3}\pi+ \left( \frac{256}{15}-\frac{49}{5}\sqrt{3}\right)\pi= \bbox[red,2pt]{\left( \frac{256}{15}-\frac{44}{5}\sqrt{3}\right)\pi}
考選部未公布答案,解題僅供參考
沒有留言:
張貼留言