108年專門職業及技術人員高等考試
等 別:高等考試
類 科:電子工程技師
科 目:工程數學
等 別:高等考試
類 科:電子工程技師
科 目:工程數學
解:
T=110ye−(x2+z2)⇒∇T=(∂T∂x,∂T∂y,∂T∂z)=(−x5ye−(x2+z2),−110y2e−(x2+z2),−z5ye−(x2+z2))⇒∇T(0,10,0)=(0,−11000,0)又→a=(1,1,1)⇒→a|→a|=(1/√3,1/√3,1/√3)⇒T(0,10,0)⋅→a|→a|=(0,−11000,0)⋅(1/√3,1/√3,1/√3)=−11000√3=−√33000
解:
(一)Resz=0cotz=limz→0zcoszsinz=limz→0cosz−zsinzcosz=1⇒∮Ccotzdz=−2πi×Resz=0cotz=−2πi(二)Res_{z=i/2}{z^3-6\over 2z-i} =\lim_{z\to i/2} {(z-i/2)(z^3-6)\over 2z-i} =\lim_{z\to i/2} {z^3 -6 \over 2}={-i/8 -6 \over 2}= -3-{i\over 16}\\ \Rightarrow \oint_C {z^3-6\over 2z-i}\;dz= -2\pi i \times Res_{z=i/2} {z^3-6\over 2z-i}= -2\pi i\times \left(-3-{i\over 16} \right) = \bbox[red, 2pt]{-{\pi \over 8}+6\pi i}
解:
(一)一階二次
(二)一階三次
(三)二階一次
解:
e^{2x}\left( 2\cos y\;dx-\sin y\;dy\right)=0 \Rightarrow 2\cos y\;dx=\sin y\;dy \Rightarrow 2\;dx = {\sin y\over \cos y}dy \Rightarrow 2x = -\ln |\cos y|+C\\ y(0)=0 \Rightarrow 0=0+C \Rightarrow C=0 \Rightarrow 2x = -\ln |\cos y| \Rightarrow \cos y=e^{-2x} \Rightarrow \bbox[red, 2pt]{y=\pm \cos^{-1}\left( e^{-2x}\right)}
解:
L(y(t))=F(s) \Rightarrow \begin{cases}L(y'(t)) = sF(s)-y(0) =sF(s)-0.16\\L(y''(t))= s^2F(s)-sy(0)-y'(0) =s^2F(s)-0.16s\end{cases} \\ \Rightarrow L(y''+y'+9y)= L(y'')+ L(y')+9L(y) = s^2F(s)-0.16s +sF(s)-0.16+ 9F(s)=0\\ \Rightarrow F(s)= {0.16(s+1)\over s^2+s+9} ={0.16(s+1) \over (s+1/2)^2+(\sqrt{35}/2)^2}\\ =0.16\cdot{s+1/2 \over (s+1/2)^2+(\sqrt{35}/2)^2} +{0.16 \over \sqrt{35}}\cdot{\sqrt{35}/2 \over (s+1/2)^2+(\sqrt{35}/2)^2} \\ \Rightarrow y(t)=0.16L^{-1}\left( {s+1/2 \over (s+1/2)^2+(\sqrt{35}/2)^2}\right)+ {0.16 \over \sqrt{35}}L^{-1}\left({\sqrt{35}/2 \over (s+1/2)^2+(\sqrt{35}/2)^2} \right)\\ =0.16e^{-1/2t}\cos{\sqrt{35}t\over 2}+ {0.16 \over \sqrt{35}} e^{-1/2t}\sin{\sqrt{35}t\over 2}\\ \Rightarrow \bbox[red, 2pt]{y(t)=0.16e^{-1/2t} \left(\cos{\sqrt{35}t\over 2}+ {1 \over \sqrt{35}} \sin{\sqrt{35}t\over 2}\right)}
解:
f(x) =\begin{cases}0, & -2<x<-1\\ 6, & -1<x<1 \\ 0, & 1<x<2\end{cases} \Rightarrow f(x)=f(-x) \Rightarrow f(x)為偶函數 \Rightarrow b_n=0\\ a_0= \frac{1}{4} \int_{-2}^2 f(x)\;dx= \frac{1}{4} \int_{-1}^1 6\;dx= 3\\ a_n={1\over 2}\int_{-2}^2 f(x)\cos {n\pi x\over 2}dx ={1\over 2}\int_{-1}^1 6\times\cos {n\pi x\over 2}dx =3\int_{-1}^1 \cos {n\pi x\over 2}dx = 3\left .\left[ {2\over n\pi}\sin {n\pi x\over 2}\right] \right|_{-1}^1\\ ={6\over n\pi}\left( \sin{n\pi \over 2}-\sin{-n\pi \over 2}\right) ={12\over n\pi}\sin{n\pi \over 2}\\ \Rightarrow f(x)=a_0+\sum_{n=1}^\infty a_n\cos{n\pi x\over 2}=3 +\sum_{n=1}^\infty {12\over n\pi}\sin{n\pi \over 2}\cos{n\pi x\over 2}=3+{12\over \pi}\sum_{n=1}^\infty {1\over n}\sin{n\pi \over 2}\cos{n\pi x\over 2}\\ \Rightarrow \bbox[red, 2pt]{f(x)=3+{12\over \pi}\sum_{n=1}^\infty {1\over n}\sin{n\pi \over 2}\cos{n\pi x\over 2}}
請問第三題順時針是否要加負號
回覆刪除謝謝提醒,已修訂!感謝您持續的關照!!
刪除第六題的exp是不是sin也要乘
回覆刪除對,也要乘, 應該是括號跑掉, 已修訂
刪除