網頁

2021年8月12日 星期四

110年竹東高中教甄-數學詳解

國立竹東高中 110 學年度第一次教師甄選

一、 簡答題:共四大題, 每題 5 分,計 20 分

解答$$\begin{array}{c|rrrrrr} n & 1 & 2 & 3 & 4& 5&6 & 7 & 8& 9 & 10& 11 & 12 & 13 & 14& 15& 16 & 17\\\hline a[n] & 1 & 4 & 9 & 16 & 25 & 22 & 17 & 10 & 1& 4 & 9 & 16 & 25 & 22 & 17 & 10 &1\end{array}\\ \Rightarrow a_n的循環數為8,而110=8\times 13+6 \Rightarrow a_{110}=a_6= \bbox[red,2pt]{22}$$
解答
$$令\cases{\overline{AC}=b \\ \overline{AB}=c} \Rightarrow \triangle ABC={1\over 2}bc \sin \angle A \Rightarrow \sqrt 3={1\over 4}bc \Rightarrow bc=4\sqrt 3\\ 假設B在原點 \Rightarrow \cases{B(0,0)\\ A(-c,0)\\ C({\sqrt 3\over 2}b-c,{1\over 2}b )} \Rightarrow  M=(B+C)/2= ({\sqrt 3\over 4}b-{1\over 2}c,{1\over 4}b) \\ \Rightarrow N=(B+M)/2 =({\sqrt 3\over 8}b-{1\over 4}c,{1\over 8}b) \Rightarrow \cases{\overrightarrow{AM}=({\sqrt 3\over 4}b+{1\over 2}c,{1\over 4}b) \\\overrightarrow{AN}= ({\sqrt 3\over 8}b+{3\over 4}c,{1\over 8}b)} \\ \Rightarrow \overrightarrow{AM} \cdot \overrightarrow{AN} =\left({\sqrt 3\over 4}b+{1\over 2}c \right)\left({\sqrt 3\over 8}b+{3\over 4}c \right)+{1\over 32}b^2 ={\sqrt 3\over 4}bc+{1\over 8}b^2+ {3\over 8}c^2\\ ={\sqrt 3\over 4}\cdot 4\sqrt 3+{1\over 8}b^2+ {3\over 8}c^2  =3 +{1\over 8}b^2+ {3\over 8}c^2 \ge 3+2 \sqrt{{1\over 8}b^2\cdot {3\over 8}c^2} \\=3+{\sqrt 3\over 4}bc =3+{\sqrt 3\over 4}\cdot 4\sqrt 3=3+3=6 \Rightarrow \overrightarrow{AM} \cdot \overrightarrow{AN}\ge 6 \Rightarrow 最小值為\bbox[red,2pt]{6}$$
解答$$\cases{z={\sqrt{65}\over 5}\sin{A+B \over 2}+ i\cos {A-B\over 2} \\ |z|={3\sqrt 5\over 5}} \Rightarrow |z|^2 =  {65\over 25 }\sin^2 {A+B\over 2}  +\cos^2 {A-B\over 2} ={45\over 25} \\ \Rightarrow {13\over 5}\left({1-\cos(A+B)\over 2} \right) +\left({1+\cos(A-B)\over 2} \right)={9\over 5} \Rightarrow 5\cos(A-B)=13\cos(A+B) \\ \Rightarrow 5(\cos A\cos B+\sin A\sin B)=13(\cos A\cos B-\sin A\sin B) \\ \Rightarrow 8\cos A\cos B=18\sin A\sin B \Rightarrow {8\over 18}={\sin A\over \cos A}\cdot {\sin B\over \cos B} \Rightarrow \tan A\tan B={4\over 9} \\ \Rightarrow \tan(A+B) ={\tan A+\tan B\over 1-\tan A\tan B} ={\tan A+{4\over 9\tan A}\over 1-{4\over 9}} ={9\over 5}\left( \tan A+{4\over 9\tan A} \right)\\ \ge {9\over 5}\cdot 2 \cdot \sqrt{\tan A\cdot {4\over 9\tan A}} =\bbox[red,2pt]{12\over 5}$$
解答$$x=ky-2代入x^2=8y \Rightarrow k^2-k-2=0 \Rightarrow (k-2)(k+1)=0\Rightarrow k=2,-1\\ k=-1 \Rightarrow x=-y-2 代入x^2=8y \Rightarrow (y+2)^2=8y \Rightarrow (y-2)^2=0 \Rightarrow 非二相異根\,不合\\ k=2 \Rightarrow x=2y-2代入x^2=8y \Rightarrow (2y-2)^2=8y \Rightarrow \cases{y=2+\sqrt 3\\ y=2-\sqrt 3} \Rightarrow \cases{x=2+2\sqrt 3\\ x=2-2\sqrt 3} \\ \Rightarrow \cases{A(2+2\sqrt 3,2+\sqrt 3)\\ B(2-2\sqrt 3,2-\sqrt 3)} \Rightarrow \overline{AB}= \sqrt{48+12} = \bbox[red,2pt]{2\sqrt{15}}$$

二、 計算證明題: 共六大題,計 80 分

解答
(1)
$$令E在\overline{CD}上,滿足\overline{BE}\bot \overline{CD},並令\angle BCD=\theta,則\cases{\overline{BE}=5\sin\theta\\ \overline{CE} =5\cos\theta},\\及\cos \angle ECA =\sin\theta ={25\cos^2\theta +144-\overline{AE}^2 \over 120\cos\theta} \Rightarrow \overline{AE}^2 = 144+25\cos^2\theta- 60\sin 2\theta\\ B點摺起來變為B'點,則\angle B'EA=90^\circ \Rightarrow \overline{AB'}^2= \overline{B'E}^2+\overline{AE}^2 \\=25\sin^2\theta +144+25\cos^2\theta- 60\sin 2\theta \\ =169-60\sin 2\theta \ge 169-60=109 \Rightarrow \overline{AB'} \ge \bbox[red,2pt]{\sqrt{109}}$$(2)$$\overline{AB}有最小值時,\angle BCD=45^\circ \Rightarrow \cases{B=B'(5/2,5/2,5/\sqrt 2)\\ C(0,0,0)\\ A(12,0,0)} \Rightarrow \vec n_1=\overrightarrow{CB}\times \overline{CA}= (0,\sqrt 2,-1)\\ 又平面DAC:z=0 \Rightarrow \vec n_2=(0,0,1) \Rightarrow \cos \theta ={\vec n_1\cdot \vec n_2\over |\vec n_1||\vec n_2|} ={-1\over \sqrt 3} \Rightarrow \tan \theta =\bbox[red,2pt]{\sqrt 2}$$
解答
每個人可能的選法:ABC,ABD,ABE,ABF,ACD,ACE,ACF,BCD,BCE,BCF,共10種;甲、乙、丙三人共有\(10^3=1000\)種選法,不符規定的選法:
(1)第一人選了ABC:第2人在第一類有\(C^3_2=3\)種選法,第三人在第一類只能與第二人重複一門課,因此第2人在第一類有2種選法;第二人在第二類的課有3種選擇,第三人有2種選擇;共有\(C^3_1\times (3\times 2)\times (3\times 2)=108\)種;
(2)第一人第二人在第一類完全相同:第3人在第一類只有2種選擇;在第二類的課程中,三人任選再扣除三人完全相同,即\(3^3-3\);共有\(C^3_2\times 3\times 2(3^3-3)=432\)種;
(3)三人在第一類彼此最多重複一門課:第一類的選擇有3!=6,第2類與(2)相同,即\(3^3-3\);因此共有\(6\times (3^3-3)=144\)
因此符合要求的選法有\(1000-108-432-144= \bbox[red,2pt]{316}\)
解答
(1)$$\cases{aX+bY=A= \begin{bmatrix}1& -1 \\ 2& 4 \end{bmatrix}\\X+Y = \begin{bmatrix}1& 0 \\ 0& 1 \end{bmatrix}=I} \Rightarrow \cases{X={1\over a-b}(A-bI)\\ Y={1\over b-a}(A-aI)} \Rightarrow XY=-{1\over (a-b)^2}(A-bI)(A-aI)=0\\ \Rightarrow (A-bI)(A-aI)=0 (\because a\gt b\Rightarrow a-b\ne 0) \Rightarrow \begin{bmatrix}1-b& -1 \\ 2& 4-b \end{bmatrix}\begin{bmatrix}1-a& -1 \\ 2& 4-a \end{bmatrix}=\begin{bmatrix}0& 0 \\ 0& 0 \end{bmatrix} \\ \Rightarrow \begin{bmatrix}ab-a-b-1 & a+b-5 \\ 10-2a-2b& ab-4a-4b+14 \end{bmatrix}=\begin{bmatrix}0& 0 \\ 0& 0 \end{bmatrix} \Rightarrow \cases{a+b=5\\ ab-a-b=1} \\\Rightarrow (5-b)b-(5-b)-b=1 \Rightarrow (b-3)(b-2)=0 \Rightarrow \cases{b=3 \Rightarrow a=2\\ b=2\Rightarrow a=3} \Rightarrow (a,b)=\bbox[red,2pt]{(3,2)} (\because a\gt b)$$(2)$$將\cases{a=3\\b=2} 代入 \cases{X={1\over a-b}(A-bI)\\ Y={1\over b-a}(A-aI)} \Rightarrow \cases{X=A-2I =\begin{bmatrix}-1& -1 \\ 2& 2 \end{bmatrix}\\ Y=3I-A =\begin{bmatrix}2& 1 \\ -2& -1 \end{bmatrix}} \\又 \cases{X(X+Y)=X^2+XY \Rightarrow XI=X^2+0 \Rightarrow X^2=X \\ (X+Y)Y=XY+Y^2 \Rightarrow IY=0+Y^2 \Rightarrow Y^2=Y} \Rightarrow X^{2021}-Y^{2021} =X-Y\\ =\begin{bmatrix}-1& -1 \\ 2& 2 \end{bmatrix}-\begin{bmatrix}2& 1 \\ -2& -1 \end{bmatrix}= \bbox[red,2pt]{\begin{bmatrix}-3& -2 \\ 4& 3 \end{bmatrix}}$$
解答$$令f(x)=ax^2+bx+c,則\cases{f(1)=a+b+c \\ f(2)=4a+2b+c\\ f(4)=16a +4b+c} \Rightarrow \cases{a={1\over 3}f(1)-{1\over 2}f(2)+{1\over 6}f(4) \\ b=-2f(1)+{5\over 2}f(2)-{1\over 2}f(4)\\ c={8\over 3}f(1)-2f(2)+{1\over 3}f(4)} \\ \Rightarrow f(7)=49a+7b+c =5f(1)-9f(2)+5f(14) \Rightarrow f(7)的最大值=5\times 3-9\times 6+5\times 24\\ =15-54+120 =\bbox[red,2pt]{81}$$
解答
$$\triangle CPB 以頂點B逆時針旋轉60^\circ \Rightarrow \cases{頂點C與頂點A重合\\ 頂點P\to P'}\Rightarrow \triangle CPB \cong \triangle AP'B \\\Rightarrow \cases{\overline{P'B} =\overline{PB}=3\\ \overline{P'A}=\overline{PC}=\sqrt 7\\ \angle PBP'=60^\circ}  \Rightarrow \triangle PP'B為一正\triangle \left(\because \cases{\overline{BP}= \overline{BP'}\\ \angle PBP'=60^\circ }\right) \Rightarrow \overline{PP'}=3 \\\Rightarrow \cos APP' = {2^2+3^2-7\over 2\times 2\times 3} ={1\over 2} \Rightarrow \angle APP'=60^\circ \\ \Rightarrow \angle APB=60^\circ+60^\circ= 120^\circ \Rightarrow \cos \angle APB= {\overline{PA}^2 +\overline{PB}^2-\overline{AB}^2\over 2\times \overline{PA}\times \overline{PB}} \Rightarrow -{1\over 2} ={13-\overline{AB}^2 \over 12} \\ \Rightarrow \overline{AB}^2=19 \Rightarrow \overline{AB} =\bbox[red,2pt]{\sqrt{19}}$$
解答$$例1:(ad-bc)^2 \ge 0 \Rightarrow a^2d^2+b^2c^2 \ge 2abcd \Rightarrow a^2c^2 +b^2d^2+a^2d^2+b^2c^2 \ge a^2c^2 +b^2d^2+2abcd \\ \Rightarrow (a^2+b^2)(c^2+d^2)\ge (ac+bd)^2\\ 例2:\cases{\vec u=(a,b)\\ \vec v=(c,d)} \Rightarrow \cos \theta = {\vec u\cdot \vec v\over |\vec u||\vec v|} ={ac+bd \over \sqrt{a^2+b^2}\cdot \sqrt{c^2+d^2}} \Rightarrow \cos^2 \theta ={(ac+bd)^2 \over (a^2+b^2)(c^2+d^2)} \le 1\\ \Rightarrow (ac+bd)^2 \le (a^2+b^2)(c^2+d^2)\\ 例3:設\cases{直線L:ax+by+k=0\\ P(x,y)\in L\\ Q(x_0,y_0)} \Rightarrow \overline{PQ} \ge d(L,Q) \Rightarrow (x-x_0)^2+(y-y_0)^2\ge {(ax_0+by_0+k)^2\over a^2+b^2} \\ \Rightarrow ((x-x_0)^2+(y-y_0)^2)(a^2+b^2) \ge (ax_0+by_0+k)^2 =(ax_0+by_0-(ax+by))^2 \\=(a(x-x_0)+b(y-y_0))^2 \Rightarrow (a^2+b^2)(c^2+d^2) \ge (ac+bd)^2,其中\cases{c=x-x_0\\ d=y-y_0}$$

=================== END ======================

解答僅供參考,其他教甄試題及詳解

沒有留言:

張貼留言