網頁

2021年8月22日 星期日

110年高中運動績優生甄試--數學科詳解

110學年度高級中等以上學校運動成績優良學生
升學輔導甄試學科考試數學科試題

單選題共 40 題

解答$${\sqrt 2-1\over \sqrt 2+1} ={(\sqrt 2-1)^2\over (\sqrt 2+1)(\sqrt 2-1)} ={2-2\sqrt 2+1\over 1} =3-2\sqrt 2,故選\bbox[red,2pt]{(E)}$$
解答$$-4\le x\le 10 \Rightarrow -7 \le x-3\le 7 \Rightarrow |x-3|\le 7 \Rightarrow h=3,故選\bbox[red,2pt]{(C)}$$
解答$$f(x)=x^3-2x^2-13x+4 =a(x-5)^3+ b(x-5)^2 +c(x-5)+d\\ \Rightarrow f(5) =125-50-65+4=d \Rightarrow d=14,故選\bbox[red,2pt]{(D)}$$
解答$$f(x)= -3x^2+6x-5 =-3(x^2-2x+1)-2 =-3(x-1)^2-2\\  \Rightarrow f(1) = -2為最大值,故選\bbox[red,2pt]{(B)}$$
解答$$兩虛根為共軛複數,也就是兩根為2\pm 3i \Rightarrow b=-3,故選\bbox[red,2pt]{(A)}$$
解答$$\cases{a\lt 0 代表圖形凹向下\\ b^2-4ac \lt 代表無實根(與x軸無交點)},故選\bbox[red,2pt]{(D)}$$
解答$$1800 =9\times 2\times 100= 3^2\times 2\times (2\times 5)^2= 2^3\times 3^2 \times 5^2 \Rightarrow x+y+z=3 + 2+ 2=7,故選\bbox[red,2pt]{(C)}$$
解答$$\cases{27^x=3^{3x} =67 \cdots(1)\\ 81^y=3^{4y}=603 \cdots(2)},{(1)\over (2)} \Rightarrow {3^{3x}\over 3^{4x}} ={67\over 603} \Rightarrow 3^{3x-4y}={1\over 9}=3^{-2} \Rightarrow 3x-4y=-2\\,故選\bbox[red,2pt]{(A)}$$
解答$$(A)\times: \log 6=\log (3\cdot 2)= \log 3+\log 2\\(B)\times: \log(2+4)=\log 6=\log 2+\log 3\ne \log 2\times \log 4\\ (C)\times: \cases{\log(2\times 4)=\log 2^3=3\log 2 \\(\log 2)\times (\log 4)=(\log 2)\times (2\log 2)=2(\log 2)^2} \Rightarrow 兩者不同 \\(D)\times: \log{2\over 3}=\log 2-\log 3\ne {\log 2\over \log 3} \\(E)\bigcirc: \log_2 5^3=3\log_2 5\\,故選\bbox[red,2pt]{(E)}$$
解答$$(A)\times: 真數x需為正數,即x\gt 0\\(B)\bigcirc: 真數x需為正數,因此圖形在y軸右側\\(C) \times: 若0\lt a\lt 1,則f(x)為遞減\\(D) \times:若a\gt 1,則f(x)為遞增\\(E)\times: x=-1與圖形無交點\\,故選\bbox[red,2pt]{(B)}$$
解答$$令公比為r,則 \cases{a_1+a_3=5\\ a_2+a_4=10} \Rightarrow \cases{a_1+a_1r^2=5\\ a_1r+a_1r^3=10} \Rightarrow \cases{a_1(1 +r^2)=5\\ a_1r(1+r^2) = 10} \\ \Rightarrow {a_1(1+r^2) \over a_1r(1+r^2)} ={5\over 10} \Rightarrow {1\over r}={1\over 2} \Rightarrow r=2,故選\bbox[red,2pt]{(B)}$$
解答$$\cases{a_5=21\\ a_9=13} \Rightarrow \cases{a_1+4d=21\\ a_1+8d=13} ,兩式相減\Rightarrow 4d=-8 \Rightarrow d=-2,故選\bbox[red,2pt]{(D)}$$
解答$$令\cases{A:喜歡打籃球的人\\ B:喜歡打排球的人},依題意\cases{全部\#(S)=46\\ \#(A)=30\\ \#(A\cap B)=15\\ \#(A\cup B)'=5}\\ 由\#(A\cup B)= \#(S)-\#(A\cup B)'=\#(A) +\#(B)-\#(A \cap B) \\ \Rightarrow 46-5=30+\#(B)-15 \Rightarrow \#(B)=26,故選\bbox[red,2pt]{(E)}$$
解答$$六個中有四個有球,其他兩人沒有球,因此共有C^6_4=15種分法,故選\bbox[red,2pt]{(A)}$$
解答$$三個女生視為一人,共四人排列有4!排法,再加三個女生有3!排法\\,因此共有4!\times 3!=144排法,故選\bbox[red,2pt]{(C)}$$
解答$$兩數小於5只有兩種情形:1+2,1+3,因此率為2/C^5_2=2/10=1/5,故選\bbox[red,2pt]{(A)}$$
解答$$全壘打王:5球皆全壘打或其中4球是全壘打,機率為({1\over 3})^5+ C^5_4\cdot ({1\over 3})^4\cdot {2\over 3}={11\over 243} \Rightarrow k=11\\,故選\bbox[red,2pt]{(B)}$$
解答$$點數和為6的情形:1+5,2+4,3+3,4+2,5+1,有5種情形,其中出現4的有2種情形\\,因此機率為2/5,故選\bbox[red,2pt]{(D)}$$
解答$$加分後,每個分數與平均值的距離不變,因此標準差不變,故選\bbox[red,2pt]{(E)}$$
解答$${5\over 4}\times 48+100=160,故選\bbox[red,2pt]{(C)}$$
解答$$\sin 30^\circ +\cos 120^\circ ={1\over 2}-{1\over 2}=0,故選\bbox[red,2pt]{(C)}$$
解答$$正弦定理:{\overline{BC}\over \sin \angle BAC}=2R \Rightarrow {6\over 1/2}=2R \Rightarrow R=6,故選\bbox[red,2pt]{(E)}$$
解答$$\cases{A[3,40^\circ] \\ B[4,100^\circ]} \Rightarrow \cases{\overline{OA}=3\\ \overline{OB}=4 \\ \angle AOB=60^\circ},再利用餘弦定理: \cos \angle AOB = {\overline{OA}^2+ \overline{OB}^2-\overline{AB}^2 \over 2\times \overline{OA}\times \overline{OB}} \\\Rightarrow {1\over 2}={3^2+4^2- \overline{AB}^2 \over 24} \Rightarrow x=\sqrt{13},故選\bbox[red,2pt]{(B)}$$
解答$$\tan 45^\circ =\tan (22.5^\circ \times 2) ={2x\over 1-x^2},其中x=\tan 22.5^\circ\\ \Rightarrow 1={2x\over 1-x^2} \Rightarrow x^2+2x-1=0 \Rightarrow x=-1+\sqrt 2(-1-\sqrt 2\lt 1,不合),故選\bbox[red,2pt]{(A)}$$
解答$$(k,2) \bot (2,-1) \Rightarrow (k,2) \cdot (2,-1)=0 \Rightarrow 2k-2=0 \Rightarrow k=1,故選\bbox[red,2pt]{(D)}$$
解答$$\sqrt{(x-1)^2+(y-1)^2} 的最小值=點(1,1)至直線L的距離={3+4+3\over \sqrt{3^2+4^2}} ={10\over 5}=2,故選\bbox[red,2pt]{(B)}$$
解答$$x^2+y^2+4x-2y-20=0 \Rightarrow (x^2+4x+4) +(y^2-2y+1)=25 \\\Rightarrow (x+2)^2+(y-1)^25= 5^2 \Rightarrow 半徑=5,故選\bbox[red,2pt]{(C)}$$
解答$$\cases{\vec a=(2,1)\\ \vec b=(1,-2)} \Rightarrow r\vec a+s\vec b=(2r+b,r-2b)=(4,7) \Rightarrow \cases{2r+b=4\\ r-2b=7} \Rightarrow \cases{r= 3\\ b=-2}\\ \Rightarrow r+s=3-2=1,故選\bbox[red,2pt]{(A)}$$
解答$$\cases{x+2y-1=0\\ 2x+4y+3=0} \Rightarrow \cases{x+2y-1=0\\ x+2y+{3\over 2}=0} \Rightarrow 距離={|-1-3/2|\over \sqrt{1^2+2^2}} ={5/2\over \sqrt 5} ={\sqrt 5\over 2},故選\bbox[red,2pt]{(E)}$$
解答$$\cases{x=3+2t\\ y=4-t} \Rightarrow {x-3\over 2}={y-4\over -1}=t \Rightarrow L的方向向量為(2,-1),故選\bbox[red,2pt]{(D)}$$
解答$$P(3,-2,4)至xy平面的距離=|4|=4,故選\bbox[red,2pt]{(E)}$$
解答$$\cases{A(1,2,3) \\B(0,-1,4)\\ C(1,3,1)} \Rightarrow \cases{\overrightarrow{AB}=(-1,-3,1) \\\overrightarrow{AC}=(0,1,-2)} \Rightarrow \overrightarrow{AB} \cdot \overrightarrow{AC} = 0-3-2=-5,故選\bbox[red,2pt]{(A)}$$
解答$$\cos\theta = {\vec u \cdot \vec v\over |\vec u||\vec v|} ={-1\over \sqrt 4\cdot 1} =-{1\over 2} \Rightarrow \theta=120^\circ ,故選\bbox[red,2pt]{(C)}$$
解答$$(A)\times:\overline{AE} \bot \overline{AB}\\(B)\times: \overline{BC} \bot \overline{AB}\\ (C)\times: \overline{CD}\parallel \overline{AB} \\(E)\times: \overline{EF}\parallel \overline{AB}\\,故選\bbox[red,2pt]{(D)}$$
解答$$(1,1,-2)\bot (2,k,-1) \Rightarrow (1,1,-2)\cdot (2,k,-1)=0 \Rightarrow 2+k+2=0 \Rightarrow k=-4,故選\bbox[red,2pt]{(B)}$$
解答$$\begin{bmatrix}\alpha+\beta & \delta\\ \gamma & \alpha-\beta\end{bmatrix} = \begin{bmatrix}5 & 2\\4 & 1\end{bmatrix} \Rightarrow \cases{\alpha +\beta=5\\ \alpha-\beta=1 } \Rightarrow 2\alpha=6 \Rightarrow \alpha=3,故選\bbox[red,2pt]{(D)}$$
解答$$AB=\begin{bmatrix}1 & 1\\2 &3\end{bmatrix}  \begin{bmatrix}-2 & 1\\0 & 1\end{bmatrix}= \begin{bmatrix}1 & 2\\-4 & 5 \end{bmatrix}=\begin{bmatrix}x & y\\z & w\end{bmatrix} \Rightarrow y=2,故選\bbox[red,2pt]{(B)}$$
解答$$d(A,L)=\overline{AF} =\sqrt{3^2+4^2}=5,故選\bbox[red,2pt]{(C)}$$
解答$${x^2\over 25}+{y^2\over 16}=1\Rightarrow \cases{a=5\\b=4} \Rightarrow c=3 \Rightarrow 2c=6,故選\bbox[red,2pt]{(A)}$$
解答$${x^2\over 25}-{y^2\over 9}=1\Rightarrow a=5 \Rightarrow |\overline{PF}-\overline{PF'}|=2a=10,故選\bbox[red,2pt]{(E)}$$

=================== end =======================

解題僅供參考,其他運動績甄試試題及詳




沒有留言:

張貼留言