網頁

2021年10月12日 星期二

110年原住民族三等考試-經建行政-統計學詳解

 110年原住民族考試

等別:三等考試
類科組別:經建行政
科目:統計學

解答
(一)$$\bar x=(0.451+0.549)\div 2=0.5 \Rightarrow 單一母體比例的不偏估計值\hat p為\bbox[red,2pt]{0.5}$$(二)$$95\%信賴區間長度為=0.549-0.451 =0.098  \Rightarrow 90\%信賴區間長度為0.098\times {z_{0.05}\over z_{0.025}} \\ =0.098\times {1.645\over 1.96} = 0.08225 \Rightarrow 90\%信賴區間= 0.5\pm {0.08225\over 2} =\bbox[red,2pt]{(0.459,0.541)}\\查試題附表可得z_{0.05}=(1.64+1.65)/2=1.645,z_{0.025}=1.96$$
(三)$$檢定統計量z={\hat p-p\over \sqrt{p(1-p)/n}} ={0.5-0.45\over \sqrt{0.45\cdot 0.55/100}} =1 \Rightarrow P(Z\gt 1)=0.5-0.3413=0.1587 \\ \Rightarrow \bbox[red,2pt]{檢定統計量z=1,對應之P值為0.1587}$$(四)$$n=z_{\alpha/2}^2\times {p(1-p)\over E^2} =1.96^2\times {0.5\times 0.5\over 0.03^2} =1067.1 \Rightarrow n=\bbox[red,2pt]{1068}$$
解答:$$(一)Var(Y) = n_2p_2(1-p_2)= 15\cdot {1\over 2}\cdot {1\over 2}=\bbox[red, 2pt]{15\over 4}\\(二)Var(X+2Y)= Var(X)+2^2Var(Y)= 10\cdot {1\over 2}\cdot {1\over 2}+4\cdot {15\over 4}= \bbox[red, 2pt]{35\over 2} \\(三)E(2X+Y) =2E(X)+ E(Y)=2\cdot 10\cdot {1\over 2}+15\cdot {1\over 2}=\bbox[red, 2pt]{35\over 2}\\(四)\cases{X\sim B(10,1/2)\\ Y\sim B(15,1/2)} \Rightarrow Z=X+Y \sim B(10+15,1/2)=B(25,1/2) \Rightarrow Z仍為二項式分配\\\qquad,其平均為為25\cdot {1\over 2}={25\over 2}、變異數為25\cdot {1\over 2} \cdot {1\over 2}={25\over 4},即\bbox[red,2pt]{\cases{名稱:二項式分配\\ 平均值=25/2\\ 變異數=25/4}}$$
解答
(一)$$依中央極限定理,無論母體分配為何,大樣本(n\ge 30)的樣本平均數抽樣分配皆為常態分配;\\母體X\sim U(0,12) \Rightarrow \cases{\mu=(0+12)/2=6\\ \sigma =\sqrt{(12-0)^2/12}= 2\sqrt 3} \Rightarrow \cases{\mu_{\bar X}=\mu =6\\ \sigma_{\bar X}=\sigma /\sqrt{n} =2\sqrt{3}/10= \sqrt 3/5}\\ \Rightarrow \bbox[red,2pt]{\cases{\mu_{\bar X}=6\\ Var(\bar {X})= 3/25}}$$(二)$$母體X\sim \chi^2(k=10) \Rightarrow \cases{\mu= k=10\\ \sigma =\sqrt{2k}= 2\sqrt 5} \Rightarrow \cases{\mu_{\bar X}=\mu =10\\ \sigma_{\bar X}=\sigma /\sqrt{n} =2\sqrt{5}/10= \sqrt 5/5}\\ \Rightarrow \bbox[red,2pt]{\cases{\mu_{\bar X}=6\\ Var(\bar {X})= 1/5}}$$(三)$$母體X\sim N(60,10^2) \Rightarrow \cases{\mu= 60\\ \sigma =10} \Rightarrow \cases{\mu_{\bar X}=\mu =60\\ \sigma_{\bar X}=\sigma /\sqrt{n} =10 /10= 1} \Rightarrow \bbox[red,2pt]{\cases{\mu_{\bar X}=60\\ Var(\bar {X})= 1}}$$(四)$$母體X\sim N(60,30^2) \Rightarrow \cases{\mu= 60\\ \sigma =30} \Rightarrow \cases{\mu_{\bar X}=\mu =60\\ \sigma_{\bar X}=\sigma /\sqrt{n} =30 /10= 3} \Rightarrow \bar{X}\sim N(60,3^2)\\ \Rightarrow P(\bar X\gt 54)=P(Z\gt {54-60\over 3}) =P(Z\gt -2) =1-P(Z\le -2)=1-P(Z\ge 2) \\ =1-(0.5-0.4772) =\bbox[red,2pt]{0.9772}\\由試題附表可得P(0\lt Z\le 2)=0.4772$$




解答
(一)$$12個點皆來自直線y=6-2x,迴歸直線即為y=6-2x,因此截距項為\bbox[red,2pt]{6}$$(二) $$迴歸直線之誤差平方和為\bbox[red,2pt]{0}$$(三)$$12個點皆在一直線上,且直線斜率為負值,因此相關係數為\bbox[red,2pt]{-1}$$(四)$$判定係數R^2=相關係數^2=(-1)^2 =\bbox[red,2pt]{1}$$

========================== end ==========================

解題僅供參考,其他高普考試題及詳解

沒有留言:

張貼留言