求一維波動方程式 one-dimentional wave equation 之解,即∂2∂t2u=c2∂2∂x2u,滿足邊界條件{u(0,t)=0u(L,t)=0,∀t及初始條件{u(x,0)=f(x)∂u∂t|t=0=g(x)
解答:令u(x,t)=F(x)G(t),則{utt=FG″
初始條件1: u(x,0)=f(x) \Rightarrow f(x)=\sum_{n=1}^\infty A_n \sin({n\pi \over L}x) \\\Rightarrow \int_0^L f(x)\sin({k\pi \over L}x)\;dx = \sum_{n=1}^\infty \int_0^L A_n\sin({k\pi \over L}x)\sin({n\pi \over L}x)\;dx =\int_0^L A_k \sin^2 ({k\pi \over L}x)\;dx ={L\over 2}A_k\\ \Rightarrow A_k={2\over L}\int_0^L f(x)\sin({k\pi \over L}x)\;dx \Rightarrow A_n={2\over L}\int_0^L f(x)\sin({n\pi \over L}x)\;dx\\初始條件2: \left. {\partial u\over \partial t}\right|_{t=0} =g(x) \Rightarrow g(x) = \sum_{n=1}^\infty \left( -{cn\pi \over L}A_n \sin({cn\pi \over L}t) +{cn\pi \over L}B_n\cos ({cn\pi \over L}t) \right)\sin({n\pi \over L}x)|_{t=0} \\ =\sum_{n=1}^\infty {cn\pi \over L}B_n\sin({n\pi \over L}x) \Rightarrow \sin({k\pi \over L}x)g(t) =\sum_{n=1}^\infty {cn\pi \over L}B_n\sin({k\pi \over L}x)\sin({n\pi \over L}x) \\ \Rightarrow \int_0^L \sin({k\pi \over L}x)g(x)\;dx = \sum_{n=1}^\infty \int_0^L {cn\pi \over L}B_n\sin({k\pi \over L}x)\sin({n\pi \over L}x)\;dx \\={ck\pi \over L}B_k\int_0^L \sin^2({k\pi \over L}x)\; dx={ck\pi \over L}B_k \cdot {L\over 2} ={ck\pi \over 2}B_k \Rightarrow B_k= {2\over ck\pi }\int_0^L \sin({k\pi \over L}x)g(x)\;dx\\ \Rightarrow B_n= {2\over cn\pi }\int_0^L \sin({n\pi \over L}x)g(x)\;dx \\ \Rightarrow \bbox[red,2pt]{ u(x,t)=\sum_{n=1}^\infty \left(A_n \cos({cn\pi\over L }t) +B_n \sin({cn\pi\over L }t)\right) \sin({n\pi \over L}x)},其中\\A_n={2\over L}\int_0^L f(x)\sin({n\pi \over L}x)\;dx,B_n= {2\over cn\pi }\int_0^L \sin({n\pi \over L}x)g(x)\;dx
沒有留言:
張貼留言