網頁

2022年2月20日 星期日

102年身障生升大學-數學乙詳解

102 學年度身心障礙學生升學大專校院甄試
甄試類(群)組別:大學組-數學乙

單選題,共 20 題,每題 5 分

解答:$$利用長除法可得:2x^4-x^3+x^2+x =(x^2+x-1)(2x^2-3x+6)-8x+6\\ \Rightarrow \cases{a=-8\\ b=6} \Rightarrow a+b=-2 ,故選\bbox[red,2pt]{(C)}$$
解答:$$f(x)=ax^3+bx^2 +cx+d \Rightarrow \cases{f(x)=(x-1)(x-2)p(x)+x+1\\ f(x)=(x+1)(x-4)q(x)+7x+1} \Rightarrow \cases{f(1)=2\\ f(2)=3\\ f(4)=29\\ f(-1)=-6} \\ \Rightarrow \cases{a+b+c+d =2 \\ 8a+4b+2c+d =3\\ 64a+16b+4c+d = 29\\ -a+b-c+d=-6} \Rightarrow  \cases{a=1 \\ b=-3 \\ c=3\\ d=1} \Rightarrow f(0)=d=1,故選\bbox[red,2pt]{(A)}$$
解答:$$\cases{3.5^2=12.25\\ 3.4^2=11.56} \Rightarrow 3.5\gt \sqrt{12} \gt 3.4 \Rightarrow 2^{3.5}\gt 2^{\sqrt{12}} \gt (2^{1.7})^2,故選\bbox[red,2pt]{(A)}$$
解答:$$\cases{x\ge 6 \Rightarrow x-6+2x\le 9 \Rightarrow x\le 5,無解\\ 0\le x\le 6 \Rightarrow 6-x+2x\le 9 \Rightarrow x\le 3 \Rightarrow 0\le x\le 3\\ x\le 0 \Rightarrow 6-x-2x\le 9 \Rightarrow -1\le x \Rightarrow -1\le x\le 0}\\ \Rightarrow -1\le x\le 3 \Rightarrow 區間長度=3-(-1)=4,故選\bbox[red,2pt]{(B)}$$
解答:$$令選取的四個數依大小順序為:a,b,c,d\\ \begin{array}{l|c} a,b,c,d& 小計\\\hline 7,6,5,1-4& 4\\ 7,5,4,1-3& 3\\ 7,4,3,1-2& 2\\ 7,3,2,1& 1\\\hdashline 6,5,4,1-3& 3\\ 6,4,3,1-2& 2\\ 6,3,2,1& 1\\\hdashline 5,4,3,1-2& 2\\ 5,3,2,1& 1\\\hdashline 4,3,2,1& 1\\\hline\end{array} \Rightarrow 共有4+3+2+1+ 3+2+1+ 2+1+1=20個,故選\bbox[red,2pt]{(C)}$$
解答:$$\cases{A=B=C=50\\ A\cap B=B\cap C=C\cap A=20\\ A\cap B\cap C=10} \Rightarrow A\cup B\cup C=50+50+50-20-20-20+10 = 100\\,故選\bbox[red,2pt]{(D)}$$
解答:$$假設實際上有病比率為p、健康比率為1-p,依題意:\cases{有病者檢測\cases{10/11檢測結果為有病\\ 1/11檢測結果為健康} \\[1ex]健康者檢測\cases{1/5檢測結果為有病\\ 4/5檢測結果為健康}};\\ 因此被判定為健康的人:\cases{{1\over 11}p其實是有病的\\[1ex] {4\over 5}(1-p)是健康的} \Rightarrow  {4\over 5}(1-p)=8\times {1\over 11}p \Rightarrow p={11\over 21}\\ 被判定有病的人:\cases{{10\over 11}p是有病的\\[1ex] {1\over 5}(1-p)其實是健康的} \Rightarrow {{10\over 11}p\over {1\over 5}(1-p)} ={{10\over 21}\over {2\over 21}} =5,故選\bbox[red,2pt]{(A)}$$
解答:$$全班總分不變,因此平均分數不變;\\又90\to 85,與平均差的平方從(90-70)^2下降至(85-70)^2;\\另一人從(70-70)^2上升至(75-70)^2,\\兩人下降多於上升,複閱後標準差下降,故選\bbox[red,2pt]{(C)}$$
解答:$$L:ax+by=7通過(1,1) \Rightarrow a+b=7 \Rightarrow b=7-a \Rightarrow L:ax+(7-a)y=1\\又\cases{ax+(7-a)y=1斜率為a/(a-7) \\3x-4y =1斜率為3/4},兩者垂直\Rightarrow {a\over a-7}\times {3\over 4}=-1 \\\Rightarrow 3a=28-4a \Rightarrow a=4,故選\bbox[red,2pt]{(B)}$$
解答:$$(x,y)在第二象限\Rightarrow \cases{x\lt 0\\ y\gt 0} \Rightarrow y-x \gt 0 \not \lt -1,故選\bbox[red,2pt]{(B)}$$
解答:$$\cases{A(2/3,2)\\ B(1/3,1)\\ C(1,1)} \Rightarrow \triangle ABC面積= {1\over 2}\cdot (1-1/3)\cdot (2-1)={1\over 3}\\ 原三直線\cases{y=3x\\ y=-3x+4\\ y=1} \xrightarrow{x,y互換}\cases{x=3y \Rightarrow y=x/3\\ x=-3y+4 \\ x=1},因此所圍面積不變,仍為{1\over 3}\\,故選\bbox[red,2pt]{(D)}$$
解答:$$|\vec v_1-2\vec v_2|^2 =(\vec v_1-2\vec v_2) \dot (\vec v_1-2\vec v_2) = |\vec v_1|^2+4|\vec v_2|^2-4\vec v_1\cdot \vec v_2 =1+4-{4\over 3} ={11\over 3}\\ \Rightarrow |\vec v_1-2\vec v_2|=\sqrt{11\over 3},故選\bbox[red,2pt]{(A)}$$
解答:$$\cases{2x+6y-4z=2a+2 \cdots(1)\\ 2x+7y-5z=a+2\cdots(2) \\x+4y-3z=a-4\cdots(3)}\Rightarrow \left|\begin{matrix}2 & 6 & -4\\2 & 7 & -5\\1 & 4 & -3\end{matrix}\right|=0 \Rightarrow 無限多解;\\又2\times(2)-2\times(3) \Rightarrow 2x+6y-4z = 10\cdots(4)(與(1)平行)2a+2=12  \Rightarrow a=5,故選\bbox[red,2pt]{(D)}$$
解答:$$\log_{10}250 =\log_{10}{1000\over 4}=\log_{10}1000 -\log_{10}4 =3-2\log_{10}2 =3-2\times 0.301=2.398,故選\bbox[red,2pt]{(B)}$$
解答:$$\begin{bmatrix} x & y\\ z& u\end{bmatrix} \begin{bmatrix} 1 & 1\\ -1& 1\end{bmatrix} =\begin{bmatrix} 2 & 4\\ -2 & 6 \end{bmatrix} \Rightarrow \cases{x-y=2\\ x+y=4} \Rightarrow x=3,故選\bbox[red,2pt]{(C)}$$
解答:$$假設生產\cases{甲商品x單位 \\乙商品y單位}需要\cases{A原料:4x+y\\ B原料:x+y},並滿足條件\cases{4x+y\le 56\\ x+y\le 35}\\,獲利f(x,y)=5x+3y; 由\cases{0\le 4x+y\le 56\\ 0\le x+y\le 35\\ 0\le x,y}所圍區域頂點\cases{A(14,0)\\ B(7,28)\\ C(0,35)\\ O(0,0)}可得\cases{f(A)=70\\ f(B)=119\\ f(C)=105\\ f(O)=0}\\ \Rightarrow 最大獲利119元,故選\bbox[red,2pt]{(A)}$$
解答:$$P(X=k)=C^7_k/128 \Rightarrow P(X=5)+ P(X=6)+P(X=7) ={1\over 128}(C^7_5+ C^7_6 +C^7_7) ={29\over 128}\\,故選\bbox[red,2pt]{(C)}$$
解答:$$P(X\gt 190)=P(Z\gt {190-170\over 10}) =P(Z\gt 2) =2.5\%,故選\bbox[red,2pt]{(D)}$$
解答:$$\cases{EX= (1+2+3+4 +5)/5 =3\\[1ex] EX^2= (1^2+2^2 +3^2+4^2+5^2)/5 =11} \Rightarrow 變異數=EX^2-(EX)^2 = 11-3^2=2\\,故選\bbox[red,2pt]{(C)}$$
解答:$$信賴區間長度與f(\hat p)=\sqrt{\hat p(1-\hat p)\over n}正比 \Rightarrow \cases{甲:\hat p=400/1600 =1/4 \\ 乙:\hat p=800/1600 =1/2\\ 丙:\hat p=1000/2500 = 2/5\\ 丁:\hat p=1250/2500=1/2} \\ \Rightarrow \cases{甲:f(\hat p)=\sqrt{(1/4)(3/4)\over 1600} ={\sqrt 3\over 160}\\ 乙:f(\hat p)=\sqrt{(1/2)(1/2)\over 1600}={2\over 160}\\ 丙:f(\hat p)=\sqrt{(2/5)(3/5)\over 2500} ={\sqrt 6\over 250}\\ 丁:f(\hat p)=\sqrt{(1/2)(1/2)\over 2500}={2.5\over 250}} \Rightarrow 丙最小,故選\bbox[red,2pt]{(C)}$$

============================= END ==================================

解題僅供參考,其他歷屆試題及詳解


沒有留言:

張貼留言