Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

網頁

2022年4月20日 星期三

111年台北市高中教甄聯招-數學詳解

111 學年度臺北市立高級中等學校正式教師聯合甄選

壹、選擇題: 佔20分(第1題為單選題,第2-4題為多選題,每題5分)

解答|ak+1ak|=1{ak+1=ak+1+ak+1=ak1a+b{a+b=20(a1a2120+)ab=14(11514+1){a=17b=3=20!3!17!=1140(B)

解答(A)×::f(x)=11<k<1(B)×:(C)×:
(D):f(x)=0x1,0,x2f(g(x))=0{g(x)=x11<g(x)<22g(x)=02x3,x4g(x)=x22<g(x)<12f(g(x))=0
(E):g(x)=02x3,x4g(f(x))=0{f(x)=x30<f(x)<1f(x)=x42<f(x)<1{314(DE)

解答f(x)f(7)(ABCDE)

解答(B):u=2a+5bu+c=(1,2,6)cu=u(1,2,6)(C):3a+4b+5c=0{3a1+4b1+5c1=03a2+4b2+5c2=03a3+4b3+5c3=0{(a1,b1,c1)(3,4,5)=0(a2,b2,c2)(3,4,5)=0(3,4,5)(3,4,5)(BC)

貳、非選擇題: 佔80分

一、填充題:佔40分(共8題,每題5分)

解答16+(125+135)+(137+147)+(149+159)=16+16+112+120=13+860=2860=715
解答1:2,4,6,842:2X,4X,6X,8X4×5=203:2XX,4XX,6XX,8XX4×25=1004:2000(125),2002(126),2004(127),2006(128),2008(129),2020(130)2022131
解答

{:(1,1,04),(1,2,04),(1,3,04),(2,3,04):(04,2,1),(04,3,1),(04,3,2),(04,3,3):(2,04,1),(2,04,2),(1,04,2),(2,04,3):(1,1,04),(1,2,04),(1,3,04),(2,3,04),(0,2,1),(24,2,1),(0,3,1),(34,3,1),(0,3,2),(34,3,2),(0,3,3),(34,3,3):(1,1,04),(1,2,04),(1,3,04),(2,3,04),(0,2,1),(24,2,1),(0,3,1),(34,3,1),(0,3,2),(34,3,2),(0,3,3),(34,3,3),(2,01,1),(2,4,1),(2,02,2),(2,4,2),(1,0,2),(1,4,2),(2,02,3),(2,4,3)465346=79
解答z=2x{128x7+64x6+32x5+16x4+8x3+4x2+2x+1=z7+z6++z+1=064x616x4+4x21=z6z4+z21=0{z8=1(z4+1)(z21)=0{z=eπi/4,eπi/2,e3πi/4,eπi,e5πi/4,e3πi/2,e7πi/4z=eπi/4,e3πi/4,e5πi/4,e7πi/4,ei0,eπiz=eπi/4,e3πi/4,eπi,e5πi/4,e7πi/4=e5πi=125x5=1x5=132
解答

ABD¯BDB¯ABDBCDAB(AAA)¯DB¯DA=¯BC¯AB¯DB13=10513¯DB=213ABB=90¯AB2+(213)2=132¯AB=313¯BB2+¯AB2=¯AB2¯BB=(513)2(313)2=413¯DB=¯BB¯BD=213DBCDAB¯BC¯AB=¯CD¯DB10513=¯CD213¯CD=4
解答34C7382C82C73×C82=980:24C6273C73C62×C73:1(2)4C5463C63C54×C63(C62×C73C54×C63)/980=425/980=85196
解答{f(x)=2exg(x)=ln(x/2)f(g(x))=g(f(x))=xf1=gP(x,2ex)Q(2ex,x)f(x)=¯PQ=2(2exx)f(x)=02ex1=0x=ln12¯PQ=2(1ln12)=2(1+ln2)

解答Axy=1A(a,1a)ABx=yB(1a,a)AC(1,1)=1(a1)2+(1a1)2=1(a2+2+1a2)2(a+1a)+1=2(a+1a)22(a+1a)+1=2(a+1a1)2=2a+1a=2+1(a+1a)2=3+22(a1a)2=1+22¯AB=(a1a)2+(1aa)2¯AB2=2(a1a)2=2+42cosACB=12+12¯AB2211=4422=2(12)

二、計算證明題:佔40分(共4題,每題10分)

解答(2,2)(6,18)[a2abc][22]=[618]{a=1b+c=9(1)25π75π

解答(1)在yz平面為一圓,其圓周長=\overline{OC}=100 =2\pi r \Rightarrow 圓半徑r={50\over \pi} \Rightarrow 圓心(0,0,50/\pi)\\ \qquad \Rightarrow 圓方程式f(y,z)=y^2+(z-50/\pi)^2 = ({50\over \pi})^2 \Rightarrow \bbox[red, 2pt]{f(y,z)=y^2+ (z-50/\pi)^2-2500/\pi^2=0} \\(2)在xy平面為一正弦(或餘弦)圖形,其\cases{振幅=半徑=50/\pi\\ 週期=100}  \Rightarrow \bbox[red, 2pt]{g(x)={50\over \pi} \sin({\pi\over 50}x)}
解答x^2+y^2+z^2 +4x-6y+8z\le 21 \Rightarrow (x+2)^2 +(y-3)^2 +(z+4)^2 \le 50 為一球,其\cases{球心O(-2,3,-4)\\ 球半徑R=5\sqrt 2} \\ 球心至平面E_1:x-2y-2z=3的距離d=\left|\cfrac{-2-6+8-3}{\sqrt 9} \right| =1\\ \Rightarrow 截圓半徑= \sqrt{R^2-d^2} =\sqrt{50-1} =7 \Rightarrow 截圓面積=49\pi\\ 兩平面\cases{E_1:x-2y-2z=3\\ E_2:x+y +kz=1}的法向量為\cases{\vec n_1=(1,-2,-2) \\ \vec n_2=(1,1,k)} 其 夾角為\theta \Rightarrow \cos \theta = \left|\cfrac{\vec n_1\cdot \vec n_2}{|\vec n_1|| \vec n_2|}\right|\\ = \left|\cfrac{-1-2k}{3 \cdot \sqrt{k^2+2}} \right|有極大值{1\over \sqrt 2}(當k=4) \Rightarrow 最大投影面積=49\pi \times {1\over \sqrt 2} = \bbox[red, 2pt]{49\sqrt 2 \pi\over 2}
解答(1) f(x)=\int_0^x {1\over 1+t^2}\;dt = \tan^{-1} x \Rightarrow f(x)+f({1\over x})={\pi \over 2} \Rightarrow \sum_{k=1}^{100} \left( f(k)+f({1\over k})\right) =100\times {\pi \over 2}\\\qquad = \bbox[red, 2pt]{50\pi}\\(2) 令\cases{u= \tan^{-1} x\\ dv = x\,dx} \Rightarrow \cases{du =dx/(1+x^2) \\ v=x^2/2} \Rightarrow \int_0^1 xf(x)\,dx =\int_0^1 x\tan ^{-1}x\,dx\\ \qquad =   \left. \left[{1\over 2}x^2\tan^{-1}x \right] \right|_0^1-{1\over 2}\int_0^1 1-{1\over 1+x^2}\,dx =   \left. \left[{1\over 2}x^2\tan^{-1}x -{1\over 2}(x-\tan^{-1}x )\right] \right|_0^1 \\\qquad ={\pi \over 8}-{1\over 2}+{\pi \over 8} =\bbox[red, 2pt]{{\pi \over 4}-{1\over 2}}
 

======================== END ==============================
解題僅供參考,其他教甄試題及詳解


3 則留言: