網頁

2022年5月1日 星期日

111學年度四技二專統測--數學(B)詳解

111 學年度科技校院四年制與專科學校二年制

統一入學測驗-數學(B)

解答:$$({1\over 3})^2 +({2\over 3})^2 ={5\over 9}\ne 1,故選\bbox[red, 2pt]{(A)}$$
解答:$$取b_k=a_{2k-1},k=1,\dots,11,則\langle b_k\rangle為等差數列,首項b_1=a_1=-1,公差d=2\times 3=6;\\因此 a_1+a_3+\cdots +a_{21}= b_1+ b_2+\cdots + b_{11} = {(-2+10\times 6)\times 11\over 2} =319,故選\bbox[red, 2pt]{(B)}$$
解答:$$|7x-a|\lt 28 \Rightarrow -28\lt 7x-a\lt 28 \Rightarrow -28+a\lt 7x \lt 28+a \Rightarrow -4+{a\over 7}\lt x\lt 4+{a\over 7} \\ \Rightarrow \cases{4+a/7=5\\ -4+a/7=b} \Rightarrow \cases{ a=7\\b=-3} \Rightarrow (b,a)=(-3,7)屬於第二象限,故選\bbox[red, 2pt]{(B)}$$
解答:$$\cases{\overline{AB}斜率={10+a\over -2} \\ L斜率=2a} \Rightarrow -{a+10\over 2}=2a \Rightarrow a=-2,故選\bbox[red, 2pt]{(C)}$$
解答:$$\cases{L_1斜率m_1=-a/2\\ L_2斜率m_2=1/4},L_1\bot L_2 \Rightarrow m_1m_2=-1 \Rightarrow -{a\over 8}=-1 \Rightarrow a=8 \Rightarrow L_1:8x+2y+12=0\\ \Rightarrow d((1,-9),L_1)= \left|{8-18+12\over \sqrt{8^2+2^2}} \right| ={2\over 2\sqrt {17}} ={\sqrt{17}\over 17},故選\bbox[red, 2pt]{(D)}$$
解答:$$f(1)=f(-2)=0 \Rightarrow 1,-2為f(x)=0之兩根\Rightarrow f(x)=a(x-1)(x+2);\\ 又f(2)=8 \Rightarrow a(2-1)(2+2)=8 \Rightarrow a=2 \Rightarrow f(x) =2(x-1)(x+2) \\\Rightarrow f(-3)=2\cdot (-4)\cdot (-1) = 8 \Rightarrow x+3除f(x)的餘式為8 ,故選\bbox[red, 2pt]{(D)}$$
解答:$$x^2+y^2-6x+2ay -7=0 \Rightarrow (x^2-6x+9)+(y^2+2ay+a^2)=7+9+a^2\\ \Rightarrow (x-3)^2 +(y+a)^2 = 16+a^2 \Rightarrow 圓心(3,-a)在x軸上\Rightarrow a=0 \Rightarrow 圓半徑r=\sqrt{7+9+0}=4\\ \Rightarrow 圓面積=r^2\pi =16\pi,故選\bbox[red, 2pt]{(B)}$$
解答:$$\overline{BC}^2 =\overline{AB}^2 +\overline{AC}^2 \Rightarrow (a-4)^2+2^2 =(3^2+5^2 )+(a-1)^2 +3^2) \Rightarrow a^2-8a+20 = a^2-2a+44\\ \Rightarrow 6a=-24 \Rightarrow a=-4,故選\bbox[red, 2pt]{(A)}$$
解答:$$P(-99,87)=(a\cos\theta,a\sin \theta) \Rightarrow \cases{a=\sqrt{99^2+87^2} \\ \cos\theta \lt 0\\ \sin \theta \gt 0} \Rightarrow \tan \theta \lt 0\Rightarrow \cases{5\sin\theta -6\cos\theta \gt 0\\ 7\cos\theta +8\tan \theta <0}\\ \Rightarrow (5\sin\theta -6\cos\theta, 7\cos\theta +8\tan \theta)=(+,-)位於第四象限,故選\bbox[red, 2pt]{(D)}$$
解答:$$f({\sqrt[3]a \times b^2\over c}) =\log_3({\sqrt[3]a \times b^2\over c})= \log_3 \sqrt[3]a +\log_3 b^2-\log_3 c ={1\over 3}\log_3 a+ 2\log_3 b-\log_3 c\\ ={1\over 3}f(a)+2f(b)-f(c) = {1\over 3}\cdot 6+2\cdot 2-5= 1,故選\bbox[red, 2pt]{(D)}$$
解答:$$f(x)=x^2+ax+4 =(x+{a\over 2})^2+4-{a^2\over 4} \Rightarrow 頂點坐標(-{a\over 2},4-{a^2\over 4})=(3,b)\\ \Rightarrow \cases{-a/2=3 \\ 4-a^2/4=b} \Rightarrow \cases{a=-6\\ b=-5} \Rightarrow f(x)的最小值=b=-5,故選\bbox[red, 2pt]{(B)}$$
解答:$$2k^2x +k^2=(1-k)x+1 \Rightarrow (2k^2+k-1)x=1-k^2 \Rightarrow x={1-k^2 \over 2k^2+k-1} ={(1-k)(1+k)\over (2k-1)(k+1)} \\ \Rightarrow x={1-k\over 2k-1}無解\Rightarrow 分母為0 \Rightarrow 2k-1=0 \Rightarrow k={1\over 2} \Rightarrow 4k^3+k+1= {1\over 2} +{1\over 2} +1=2\\,故選\bbox[red, 2pt]{(C)}$$
解答:$$\triangle ABC ={1\over 2}\cdot \overline{AB}\cdot \overline{AC} \sin \angle A \Rightarrow {1\over 2}\cdot 2\cdot 2\sqrt 3\sin \angle A=3 \Rightarrow \sin \angle A ={\sqrt 3\over 2} \Rightarrow \cos \angle A= \pm {1\over 2}\\ 餘弦定理: \cos \angle A={2^2+(2\sqrt 3)^2 -\overline{BC}^2 \over 2\cdot 2\cdot 2\sqrt 3} ={16-\overline{BC}^2 \over 8\sqrt 3} =\pm {1\over 2} \Rightarrow \overline{BC}^2 = 16\pm 4\sqrt 3 \\\Rightarrow \overline{BC}=\sqrt{16\pm 4\sqrt 3},故選\bbox[red, 2pt]{(A)}$$
解答:$$y=f(x)=a\sin(bx)+c \Rightarrow \cases{f(0)=3\\ f(\pi)=5\\ f(3\pi)=1 \\ f(4\pi)=3} \Rightarrow \cases{c=3 \\ a=5-3=2 \\ 週期=4\pi \Rightarrow b=1/2} \\\Rightarrow a+2b+c= 2+1+3=6,故選\bbox[red, 2pt]{(C)}$$
解答:$$f(x)= (2x+3)(x^3-x)+6 = 2x^4+3x^3-2x^2-3x+6\\ 利用長除法可得 f(x)=(x^2+3)(2x^2+3x-8) -12x+30 \Rightarrow  \cases{q(x)=2x^2+3x-8 \\ r(x)=-12x+30} \\\Rightarrow q(x)-r(x)= 2x^2+15x-38,故選\bbox[red, 2pt]{(A)}$$
解答:$$需同時滿足\cases{同意票數\gt 不同意票數\\ 同意票數\ge 10000\times {1\over 4}=2500},只有(C)符合,故選\bbox[red, 2pt]{(C)}$$
解答:$$(A)\times: 期中考與81差距和=3+1+0-1-3-7+0 \lt 0 \Rightarrow 不均不到81\\ (B)\times: 全距=最大-最小=88-77=11\ne 5\\ (C)\times: 期中考的平均=80 \Rightarrow 標準差= \sqrt{(4^2+2^2+1^2+0+2^2+6^2+1^2)\div 7}=\sqrt{62\over 7}\lt 5\\(D)\bigcirc: 期末考平均=83\Rightarrow 標準差= \sqrt{(5^2+1^2+ 2^2+1^2 +1^2+ 6^2+0)\div 7}= \sqrt{68\over 7} \lt 6\\,故選\bbox[red, 2pt]{(D)}$$
解答:$$\cases{1+1\%= 1.01 \Rightarrow 1.01^{365} \ge (1+36)=37\\ 1-1\%= 0.99 \Rightarrow 0.99^{365}\lt 100\%-97\%=3\%=0.03},故選\bbox[red, 2pt]{(A)}$$
解答:$$(A)\times: \cases{熱量=100\times 3=300 \lt 400\\ 糖量=8\times 3=24\gt 20} \\(B) \times:\cases{熱量=100\times 2+150=350 \lt 400\\ 糖量=8\times 2+6=22\gt 20} \\(C) \times: \cases{熱量=150\times 3=450 \gt 400\\ 糖量=6\times 3=18\lt 20} \\(D) \bigcirc: \cases{熱量=100+ 150\times 2=400 \not \gt 400\\ 糖量=8+ 6\times 2=20 \not \gt 20}\\,故選\bbox[red, 2pt]{(D)}$$
解答:$$假設O為圓心\Rightarrow \angle MOH ={2\over 12}\times 360^\circ = 60^\circ \Rightarrow \cos \angle MOH={1\over 2} ={8^2+5^2 -\overline{MH}^2 \over 2\cdot 8\cdot 5} \\ \Rightarrow \overline{MH}^2=49 \Rightarrow \overline{MH}=7,故選\bbox[red, 2pt]{(C)}$$
解答:$$假設小游體重a公斤\Rightarrow 18.5\lt {a-5\over 1.7^2} \lt 24 \Rightarrow 53.465\lt a-5\lt 69.36 \Rightarrow 58.465 \lt a\lt 74.36\\,故選\bbox[red, 2pt]{(A)}$$
解答:$$底色有5種選擇 \Rightarrow \cases{愛心有4種選擇\\ 文字有4種選擇} \Rightarrow 共有5\times 4\times 4=80種選擇,故選\bbox[red, 2pt]{(B)}$$
解答:$$pq= 8k+1,k\in \mathbb{N} 且1\lt p,q\lt 8 \Rightarrow pq=9,17,25,33,41,49 \\ \Rightarrow (p,q)=(3,3),(5,5),(7,7),共三種組合,故選\bbox[red, 2pt]{(C)}$$
解答:$$\cases{台北需要30個分別來自桃園20個及雲林10個,運費=20\times 200+10\times 600=10000\\ 台南需要20個全部從雲林運來,運費=20\times 300=6000} \\ \Rightarrow 運費共需10000 +6000= 16000元 ,故選\bbox[red, 2pt]{(B)}$$

解答:$$不成功介於{8\over 10}N與{9\over 10}N之間,即成功介於{1\over 10}N與{2\over 10}N之間\\ (A)\times: 成功\lt {1\over 10}N(N=10)\\ (B)\bigcirc: 成功={3\over 20} \Rightarrow {1\over 20}N\lt {3\over 20} \lt {2\over 10}N(N=20) \\(C)\times: 成功={13\over 60} \gt {2\over 10}N (N=60) \\(D)\times: {80\over 100} \gt {2\over 10}N(N=100) \\,故選\bbox[red, 2pt]{(B)}$$
==================== END =========================

解題僅供參考,其他歷年試題及詳解
 

沒有留言:

張貼留言