國立宜蘭大學108學年度暑假轉學招生考試微積分試題
解答:limt→0tantsec2t3t=limt→0sint3tcostcos(2t)=limt→02sint3t(cos(3t)+cost)=limt→0(2sint)′(3t(cos(3t)+cost))′=limt→02cost3(cos(3t)+cost)−3t(3sin(3t)+sin(t))=26=13,故選(C)解答:f(x)=x−4x+4=1−8x+4⇒f′(x)=8(x+4)2⇒f′(3)=849,故選(B)
解答:limx→∞3x+2√2x2+1=limx→∞3+2/x√2+1/x2=3√2,故選(C)
解答:f(x)=x3−3x2−24x+2⇒f′(x)=3x2−6x−24⇒f″(x)=6x−6因此f′(x)=0⇒x2−2x−8=(x−4)(x+2)=0⇒x=4,−2⇒{f″(4)=18>0f″(−2)=−18<0⇒{f(−2)=30f(−3)=20f(1)=−24⇒絕對最大值=30,故選(B)
解答:g(2)=23=a⋅22⇒a=2,故選(E)
解答:∫π/40∫cosθ03r2sinθdrdθ=∫π/40cos3θsinθdθ=∫√2/21−u3du(取u=cosθ⇒du=−sinθdθ)=[−14u4]|√2/21=−116+14=316,故選(D)
解答:取{u=x⇒du=dxdv=e−x/2dx⇒v=−2e−x/2⇒∫40xe−x/2dx=[−2xe−x/2]|40+2∫40e−x/2dx=[−2xe−x/2−4e−x/2]|40=−12e−2+4,故選(B)
解答:取{u=x⇒du=dxdv=cosxdx⇒v=sinx⇒∫π/20xcosxdx=[xsinx]|π/20−∫π/20sinxdx=[xsinx+cosx]|π/20=π2−1,故選(C)
解答:∫20∫√2x−x20xydydx=∫2012x(2x−x2)dx=[13x3−18x4]|20=83−2=23,故選(D)
解答:∞∑n=124n2−1=∞∑n=12(2n−1)(2n+1)=∞∑n=1(12n−1−12n+1)=(1−13)+(13−15)+(15−17)+⋯=1,故選(C)
========================== END ========================
解題僅供參考,其它轉學考試題及詳解
沒有留言:
張貼留言