臺灣綜合大學系統108學年度學士班轉學生聯合招生考試
科目名稱:工程數學
類組代碼:D09
解答:(a)y′=−sinxcosycosxsiny⇒−sinycosydy=sinxcosxdx⇒−∫tanydy=∫tanxdx⇒ln|cosy|=ln|secx|+C1⇒|cosy|=C2|secx|⇒y=±cos−1(C2secx)(b)xy′+2y=cosx⇒y′+2xy=1xcosx⇒積分因子I(x)=e∫(2/x)dx=x2⇒I(x)y′+I(x)2xy=I(x)1xcosx⇒x2y′+2xy=xcosx⇒(x2y)′=xcosx⇒x2y=∫xcosxdx=xsinx+cosx+C⇒y=1xsinx+1x2cosx+Cx2最後將y(π/2)=0代入⇒0=2πsinπ2+4π2cosπ2+4π2C=2π+4π2C⇒C=−π2⇒y=1xsinx+1x2cosx−π2x2
解答:(a)e2xcos(2x)和e2xsin(2x)為齊次解⇒特徵方程式的解為λ=2±2i⇒λ2−4λ+8=0⇒二階ODE:y″
解答:先求齊次解,即y''+5y'-6y=0 \Rightarrow \lambda^2+5 \lambda-6=0 \Rightarrow (\lambda+6)(\lambda-1)=0\\ \Rightarrow \lambda = 1,-6 \Rightarrow y_h= C_1e^x +C_2e^{-6x}\\ 接著令y_p= Axe^x \Rightarrow y_p'=Axe^x +Ae^x \Rightarrow y_p''=Axe^x +2Ae^x \Rightarrow y_p''+5y_p'-6y_p = 7Ae^x=4e^x\\ \Rightarrow A={4\over 7} \Rightarrow y_p={4\over 7}xe^x \Rightarrow y=y_h+ y_p \Rightarrow \bbox[red,2pt]{y= C_1e^x +C_2e^{-6x} +{4\over 7}xe^x}
解答:3y''+6y'+3y = 3t \Rightarrow \mathcal L\{3y''+6y'+3y \} =L\{3t\}\\ \Rightarrow 3(s^2Y(s)- sy(0)-y'(0)) +6(sY(s)-y(0))+3 Y(s)={3\over s^2} \\ \Rightarrow 3s^2Y(s)+ 3s-3 +6sY(s)+6+3Y(s)={3\over s^2} \Rightarrow (3s^2+6s+3)Y(s)={3\over s^2}-3-3s \\ \Rightarrow Y(s)={1\over s^2(s+1)^2} -{1\over s+1 } ={-2\over s}+{1\over s^2} +{1\over s+1} +{1\over (s+1)^2} \\ \Rightarrow y(t)=\mathcal L^{-1}\{Y(s)\}= \mathcal L^{-1}\{{-2\over s}+{1\over s^2} +{1\over s+1} +{1\over (s+1)^2} \} \\ \Rightarrow \bbox[red,2pt]{y=-2+t+ e^{-t}+ te^{-t}}
解題僅供參考,其他轉學考歷屆試題及詳解
沒有留言:
張貼留言