國立高雄師範大學 109 學年度學士班轉學生招生考試試題
系所別:電機工程學系 二年級
科 目:微積分(全一頁)
解答:(a)ddx(cosx(1−x)1+x)|x=0=(−sinx(1−x)−cosx1+x−cosx(1−x)(1+x)2)|x=0=−1−1=−2(b)ddxax=ddxelnax=ddxexlna=lna⋅exlna=lna⋅ax⇒ddxax=axlna,故得證
解答:f(x)=x3+3x2−9x−13⇒f′(x)=3x2+6x−9⇒f″(x)=6x+6f′(x)=0⇒3(x+3)(x−1)=0⇒x=1,−3⇒{f″(1)=12>0⇒f(1)=−18為相對極小值f″(−3)=−12<0⇒f(−3)=14為相對極大值⇒f(x)的相對極值為−18(極小值),14(極大值)
解答:(a)y2+2x2y−x4=7⇒2yy′+4xy+2x2y′−4x3=0⇒(2y+2x2)y′=4x3−4xy⇒y′=dydx=4x3−4xy2y+2x2(b)切線斜率:dydx|(1,2)=4−84+2=−23
解答:(a)令{u=lnx⇒du=1xdxdv=16x3dx⇒v=4x4⇒∫16x3ln(x)dx=4x4lnx−∫4x3dx=4x4lnx−x4+C(b)∫π0cos(2x)sin(4x+π/4)dx=∫π0cos(2x)(sin(4x)cos(π/4)+sin(π/4)cos(4x))dx=1√2∫π0cos(2x)sin(4x)+cos(2x)cos(4x)dx=12√2∫π0sin(6x)+sin(2x)+cos(6x)+cos(2x)dx=12√2[−16cos(6x)−12cos(2x)+16sin(6x)+12sin(2x)]|π0=0
解答:取u=t2−9,則du=2tdt⇒∫53t√t2−9dt=∫16012√udu=[13u3/2]|160=643
解答:x=2t−1⇒dx=2dt⇒∫31ydx=∫21(t2+2)2dt=[23t3+4t]|20=163+8=403
解答:∬
解答:
\int_0^4 \int_\sqrt y^2 \sqrt{x^3+1}\,dxdy = \int_0^2 \int_0^{x^2} \sqrt{x^3+1}\,dydx =\int_0^2 x^2 \sqrt{x^3+1}\,dx \\ 令u=x^3+1 ,則du=3x^2 dx \Rightarrow \int_0^2 x^2 \sqrt{x^3+1}\,dx =\int_1^9 {1\over 3}\sqrt u\,du =\left.\left[{2\over 9} u^{3/2} \right] \right |_1^9 =6-{2\over 9} =\bbox[red, 2pt]{52\over 9}
解答:\vec r(t)=2\cos t \vec i+ (1+\sin t)\vec j \Rightarrow \vec v(t)={d\over dt}\vec r(t)=-2\sin t\vec i+ \cos t\vec j \\ \Rightarrow \vec v(\pi/3) = -\sqrt 3\vec i+{1\over 2}\vec j \Rightarrow 速度=|\vec v(\pi/3)| = \sqrt{3+ {1\over 4}} =\bbox[red, 2pt]{\sqrt{13}\over 2}
================= END =====================
解答:\vec r(t)=2\cos t \vec i+ (1+\sin t)\vec j \Rightarrow \vec v(t)={d\over dt}\vec r(t)=-2\sin t\vec i+ \cos t\vec j \\ \Rightarrow \vec v(\pi/3) = -\sqrt 3\vec i+{1\over 2}\vec j \Rightarrow 速度=|\vec v(\pi/3)| = \sqrt{3+ {1\over 4}} =\bbox[red, 2pt]{\sqrt{13}\over 2}
================= END =====================
解題僅供參考,其他試題及詳解
沒有留言:
張貼留言