臺北市 112 學年度市立普通型暨技術型高級中等學校正式教師聯合甄選
壹、選擇題:佔 20 分(共 4 題,每題 5 分)
單選題
解答: 假設{A(0,0,0)B(1,0,1/2)C(1,1,2/3)D(0,1,a)⇒{→AB=(1,0,1/2)→AC=(1,1,2/3)⇒→n=→AB×→AC=(−1/2,−1/6,1)⇒△ABC構成的平面E:−12x−16y+z=0D在E上⇒0−16+a=0⇒a=16,故選(A)
解答:此題相當於求兩圖形{y=f(x)=sin(πx)y=g(x)=12x的交點數由於f(0)≠g(0),僅需考慮x∈(0,3],且{0≤|f(x)|≤1g(x)>0⇒只需考慮f(x)>0的範圍,即{0<πx<π2π<πx<3π⇒{0<x<12<x<3g(x)為遞減且明顯解:f(1/2)=g(1/2)=1為y=f(x)之最高點⇒還有三個交點,分別位於(1/2,1),(2,5/2),(5/2,3)⇒共四點,故選(D)

解答:∞∑k=1k⋅pk(1−p)≥10⇒∞∑k=1kpk−∞∑k=1kpk+1≥10⇒p(1−p)2−p2(1−p)2≥10⇒p1−p≥10⇒11−p−1≥10⇒11−p≥11⇒1−p≤111⇒p≥1011,故選(C)
貳、非選擇題:佔 40 分(共 8 題,每題 5 分)
解答:由題意:{建仔身高¯AE=1.8伊森身高¯BF=1.6伊森前進距離¯AB=45∠CEH=α∠CFG=β,並假設{大樓高度¯CD=h¯BD=w則{tanα=¯CH¯EHtanβ=¯CG¯FG⇒{h−1.8w+45=16h−1.6w=13⇒{w=6h−10.8−45w=3h−4.8⇒6h−55.8=3h−4.8⇒3h=51⇒h=17⇒教學大樓高度為17公尺
P,Q皆在直線y=x上⇒假設{Q(k,k)P(k/2,k/2)⇒{k=logak12k=logak2⇒{k=4a=√2⇒Q(4,4)⇒¯OQ2=32
解答:{F1(−4,0)F2(4,0)頂點(0,3)⇒{c=4b=3⇒a=5⇒Γ:x225+y29=1又¯PF1+¯F1A≥¯PA⇒¯PF1+¯PF2+¯F1A≥¯PA+¯PF2⇒¯PA+¯PF2的最大值=¯PF1+¯PF2+¯F1A=2a+√52+1=10+√26
解答:→a∥→b⇒68=√1−sinθ√sinθ⇒916=1−sinθsinθ⇒sinθ=1625⇒→a⋅→b最大值=6√1−sinθ+8√sinθ=6⋅√925+8⋅√1625=18+325=10
解答:{A(0,0,0)B(1,0,0)C(0,1,0)D(1,1,1)⇒{E1=△ABC:z=0E2=△ACD:x−z=0E3=△ABD:−y+z=0E4=△BCD:x+y−z=1假設球心P(a,b,c)⇒{d(P,E1)=cd(P,E2)=|a−c|/√2d(P,E3)=|−b+c|/√2d(P,E4)=|a+b−c−1|/√3△OAB為等腰直角⇒a=b,若a<c⇒d(P,E2)=c−a√2=c⇒a=(1−√2)c<0不合⇒a≥c⇒a=(√2+1)c再考慮d(P,E4)=|(2√2+1)c−1|√3=c若c≥12√2+1⇒c=12√2−√3+1⇒a=√2+12√2−√3+1>1⇒P在四面體外側,不合因此c≤12√2+1⇒c=12√2+√3+1⇒a=√2+12√2+√3+1
解答:f(n)+n=2023⇒n<2023⇒max
解答:\triangle ABC 面積=6={3x+4y+5z\over 2} \Rightarrow 3x+4y+5z=12\\ 利用\text{Lagrange multiplier}求解:假設\cases{f=3x^2+ y^2+2yz+ 2z^2 \\ g=3x+4y+5z-12} \\ \Rightarrow \cases{f_x=\lambda g_x \\f_y=\lambda g_y \\f_z=\lambda g_z \\g=0 } \Rightarrow \cases{6x=3\lambda \cdots(1)\\ 2y+2z=4\lambda \cdots(2)\\ 2y+4z=5\lambda\cdots(3)\\ 3x+4y+5z=12 \cdots(4)} ,由(1),(2),(3)\Rightarrow \cases{{3x\over y+z}={3\over 4} \\ {y+z\over y+2z} ={4\over 5} \\ {3x\over y+2z}={3\over 5}} \\ \Rightarrow \cases{x=z\\ y=3z}代入(4)\Rightarrow z={3\over 5} \Rightarrow \cases{x=z={3\over 5}\\ y={9\over 5}} \Rightarrow f({3\over 5}, {3\over 5},{9\over 5}) = \bbox[red,2pt]{36\over 5}為最小值
解答:假設X不含112,例X=\{a,b,c,d,a\gt b\gt c\gt d\} \Rightarrow f(X)=a-b+c-d\\ 又f(X\cup \{112\}) =112-a+b-c+d,因此f(X)+f(X\cup \{112\})=112\\ \cases{X不含112的有2^{111}個\\ X含112的也有2^{111}個} \Rightarrow \sum f(X) = \bbox[red,2pt]{112\cdot 2^{111}}
參、計算題:佔 40 分(共 4 題,每題 10 分)
解答:\mathbf{(1)}\; 行星E(400\cos \theta,400\sin \theta)每天繞行角度為{2\pi\over 500}={\pi \over 250} \\ \Rightarrow 第t天時,E坐標為(400\cos {t\pi\over 250}, 400\sin {t\pi\over 250})\\ 若E為原點,衞星M(\cos \theta, \sin \theta)每天繞行角度為{2\pi \over 50}={\pi\over 25}\\ \Rightarrow 第t天時,M坐標為(\cos {t\pi\over 25},\sin {t\pi\over 25})\\ 因此E坐標為(400\cos {t\pi\over 250}, 400\sin {t\pi\over 250})時,M坐標為\bbox[red,2pt]{(\cos {t\pi\over 25} +400\cos{t\pi\over 250},\sin {t\pi\over 25}+ 400\sin{t\pi\over 250})}\\ \mathbf{(2)}\;第t天時,\cases{\vec u=\overrightarrow{ES}=(-400\cos {t\pi\over 250}, -400\sin {t\pi\over 250}) \\ \vec v= \overrightarrow{EM}=(\cos{t\pi\over 25}, \sin{t\pi\over 25})} \\ \angle SEM=180^\circ \Rightarrow \cos \angle SEM=-1\Rightarrow \cos \angle SEM = {\vec u\cdot \vec v\over |\vec u||\vec v|} \\={-400\cos{t\pi\over 250}\cos {t\pi \over 5}- 400\sin{t\pi\over 250} \sin{t\pi\over 5} \over 400\cdot 1} = -\cos{t\pi\over 250}\cos {t\pi \over 5}-\sin{t\pi\over 250} \sin{t\pi\over 5} \\ =-\cos({t\pi\over 5}-{t\pi\over 250}) =-1 \Rightarrow \cos({t\pi\over 5}-{t\pi\over 250})=1\Rightarrow {t\pi\over 5}-{t\pi \over 250} =\pi \\ \Rightarrow 49t\pi = 250\pi \Rightarrow t={250\over 49} \approx 5.1 \Rightarrow 第\bbox[red, 2pt]{6}天
解答:\mathbf{(1)}(x,y)逆時鐘旋轉\theta後變為(X,Y) \Rightarrow \begin{bmatrix}X \\Y \end{bmatrix}=\begin{bmatrix} \cos \theta & -\sin \theta \\\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix}x \\y \end{bmatrix} =\begin{bmatrix}x\cos\theta-y\sin \theta \\ x\sin\theta+y \cos\theta \end{bmatrix} \\ \Rightarrow 旋轉後的橢圓方程式\Gamma': (x\cos\theta-y\sin \theta)^2 -(x\cos\theta-y \sin \theta)( x\sin \theta+ y\cos \theta)+ (x\sin \theta+ y\cos \theta)^2=3 \\ \Rightarrow (\cos^2\theta -\cos\theta \sin\theta+\sin^2 \theta)x^2 +(-2\cos\theta \sin\theta-\cos^2\theta+\sin ^2\theta +2\cos\theta \sin\theta)xy \\\qquad +(\sin^2 \theta+\cos\theta \sin\theta+ \cos^2 \theta)y^2=3\\ \Rightarrow \bbox[red, 2pt]{(1-\cos\theta \sin\theta)x^2 + (\sin^2\theta -\cos^2\theta)xy +(1+\sin\theta \cos\theta)y^2 =3 }\\ \mathbf{(2)}\sin^2 \theta -\cos^2\theta =0 \Rightarrow \theta=45^\circ \Rightarrow \Gamma':(1-{1\over 2})x^2+0xy+ (1+{1\over 2})y^2=3 \\ \Rightarrow {1\over 2}x^2+{3\over 2}y^2=3 \Rightarrow {1\over 6}x^2+ {1\over 2}y^2=1 \Rightarrow \bbox[red, 2pt]{\cases{A=1/6\\ B=1/2}}
解答:\mathbf{(1)}\; 梯形面積={\overline{BC}+ \overline{AD} \over 2}\cdot \overline{BH} ={2+(2+2a)\over 2} \cdot b =\bbox[red, 2pt]{(a+2)b}\\\mathbf{(2)}\;a^2+b^2=1 \Rightarrow \cases{a= \cos \theta\\ b=\sin \theta} \Rightarrow (a+2)b= (\cos \theta +2)\sin \theta \equiv f(\theta) \\ \Rightarrow f(\theta) =2\sin\theta +{1\over 2}\sin 2\theta \Rightarrow f'(\theta) =0 \Rightarrow 2\cos\theta+ \cos 2\theta = 2\cos \theta +2\cos^2\theta -1=0 \\\Rightarrow \cos \theta ={\sqrt 3-1\over 2}({-\sqrt 3-1\over 2}\lt 0, 不合) \Rightarrow a=\bbox[red, 2pt]{\sqrt 3-1\over 2}
解答:\mathbf{(1)}\; \bbox[red,2pt]{P在\overline{BC}上},使得\overline{PA}+ \overline{PB}+ \overline{PC}+ \overline{PD} =\overline{AB}+2\overline{BC} +\overline{CD} =\overline{AD}+\overline{BC} 最小 \\\mathbf{(2)}\;假設\cases{\overline{AB}=\overline{CD}=m\\ \overline{BC}=2n}\;,並令\overline{BC}的中點O為原點,即\cases{A(-m-n,0)\\ B(-n,0)\\ C(n,0)\\ D(m+n,0)\\ P(a,b),b\ne 0} \\ 因此\cases{ \overline{PA}^2 = (a+m+n)^2+b^2\\ \overline{PD}^2 =(a-m-n)^2+b^2 \\ \overline{PB}^2 =(a+n)^2+b^2\\ \overline{PC}^2 =(a-n)^2+b^2} \Rightarrow \cases{\overline{PA}^2+ \overline{PB}^2 = 2a^2+2b^2 +2(m+n)^2 \\ \overline{PB}^2 +\overline{PC}^2 = 2a^2+ 2b^2+2n^2} \\ \Rightarrow \overline{PA}^2+ \overline{PB}^2\gt \overline{PB}^2 +\overline{PC}^2 \Rightarrow \overline{PA}+ \overline{PD} \gt\overline{PB} +\overline{PC},\bbox[red,2pt]{故得證}
======================== END ==============================
謝謝老師的解題
回覆刪除另外老師計算題第4題的(2),最後PD誤植成PB了
謝謝提醒,已修訂
刪除計算2(2),答案對調了;
回覆刪除計算4(2),請問最後一行的箭頭是為什麼?