網頁

2023年5月11日 星期四

112年鳳山高中教甄-數學詳解

國立鳳山高中 112 年教師甄試數學科試題

一、填充題(14 題,每題 5 分,占 70 分)

解答:$${2022^4 \over 2023^3}={(2023-1)^4\over 2023^3} ={1\over 2023^3}(2023^4-4\cdot 2023^3+6\cdot 2023^2-4\cdot 2023+1) \\ =2023-4+{6\over 2023}-{4\over 2023^2}+{1\over 2023^3} \Rightarrow 最接近的正整數=2023-4=\bbox[red, 2pt]{2019}$$
解答:$$取\cases{O(0,0,0)\\ A(3,0,0)\\ B(3,5,0)\\ C(0,5,0)\\ D(3,0,2)\\ E(3,5,2)\\ F(0,5,2)\\ G(0,0,2)} \Rightarrow \cases{\vec a\cdot \vec b =\vec a\cdot \vec d= \vec a\cdot \vec e=9\\ \vec a\cdot \vec c=\vec a\cdot \vec f=\vec a\cdot \vec g=0\\ \vec b\cdot \vec c=\vec b\cdot \vec f=25\\ \vec b\cdot \vec d=9\\ \vec b\cdot \vec e=34\\ \vec b\cdot \vec g=0\\ \vec c \cdot \vec d =\vec c\cdot \vec g=0\\ \vec c\cdot \vec e=\vec c\cdot \vec f=25\\ \vec d\cdot \vec e=13\\ \vec d\cdot \vec f=\vec d\cdot \vec g=4\\ \vec e\cdot f=29 \\ \vec e\cdot \vec g = \vec f\cdot \vec g=4},總數相加=228 \\ \Rightarrow 期望值={228\over C^7_2} ={228\over 21} = \bbox[red, 2pt]{76\over 7}$$
解答:$$\overline{AD}為\angle BAC的角平分線 \Rightarrow {\overline{AB} \over \overline{AC}}={\overline{BC} \over \overline{DC}}={3\over 1} \Rightarrow \cases{\overline{AB}=3k\\ \overline{AC}=k}\\ 假設\cases{\overline{AD}=a \\ \angle BAD=\angle DAC =\theta} \Rightarrow \cases{\cos \angle ABD ={(3k)^2+a^2-3^2\over 2\cdot 3k\cdot a} \\[1ex] \cos \angle DAC ={k^2+a^2-1^2 \over 2\cdot a\cdot k} } \Rightarrow {9k^2+a^2-9\over 6ak} ={k^2+a^2-1\over 2ak}\\ \Rightarrow 3k^2+a^2+3 \Rightarrow a=\sqrt{3k^2-3} \Rightarrow \cos \theta = {k^2+(3k^2-3)-1\over 2k\sqrt{3k^2-3}}  ={2\sqrt{k^2-1}\over \sqrt 3k} \\ \Rightarrow \sin \theta = {\sqrt{4-k^2}\over \sqrt 3 k} \Rightarrow \triangle ABC面積={1\over 2}(3ak+ak)\sin \theta =2ak\sin \theta \\=2\cdot \sqrt{3k^2-3}\cdot k\cdot {\sqrt{4-k^2}\over \sqrt 3 k} ={2\over \sqrt 3}\sqrt{-3k^4+15k^2-12} ={2\over \sqrt 3}\sqrt{-3(k^2-{5\over 2})^2+{27\over 4}}\\ 當k^2={5\over 2}時,面積有最大值{2\over \sqrt 3}\cdot \sqrt{27\over 4} =\bbox[red, 2pt]3$$
解答:$$利用\text{Lagrange }算子求極值:令\cases{f(x,y)=x+y\\ g(x,y)=x+y-4\sqrt{x+2}-6\sqrt{y+1}}\\ \cases{f_x=\lambda g_x\\ f_y= \lambda g_y\\ g=0} \Rightarrow \cases{1=\lambda(1-{2\over \sqrt{x+2}}) \\ 1=\lambda (1+{3\over \sqrt{y+1}})},兩式相除\Rightarrow -{2\over \sqrt{x+2}} ={3\over \sqrt{y+1}} \Rightarrow y={1\over 4}(9x+14) \\將y={1\over 4}(9x+14)代入g=0\Rightarrow {13x+14\over 4}= 4\sqrt{x+2}+6\sqrt{9x+18\over 4} =13\sqrt{x+2} \\ \Rightarrow (13x+14)^2=52^2(x+2) \Rightarrow 169x^2-2340x-5212=0 \Rightarrow x={2340+\sqrt{8998912}\over 2\times 169} \\ ={2\cdot 13\cdot 90+13\cdot 64\sqrt{13}\over 2\cdot 13\cdot 13} =\bbox[red, 2pt]{ 90+32\sqrt{32}\over 13} $$
解答:$$令t=x-2,則(x-2)^6 \lt x^3-x^2+5x-4 \Rightarrow t^6\lt t^3+5t^2+13t+10\\ \Rightarrow t^6-t^3-5t^2-13t-10\lt 0 \Rightarrow (t+1)(t-2)(t^4+t^3+3t^2+4t+5) \lt 0\\ \Rightarrow-1\lt t\lt 2 \Rightarrow -1\lt x-2\lt 2 \Rightarrow \bbox[red, 2pt]{1\lt x\lt 4}\\ 由於\cases{t^2+t+1 \gt 0\\ 2+4t+5\gt 0},\forall x \in \mathbb R \Rightarrow t^4+t^3+3t^2+4t+5=t^2(t^2+t+1)+2t^2+4t+5\gt 0\\ $$
解答:$$令z=e^{i\theta} \Rightarrow z^3=e^{i3\theta } \Rightarrow \cases{3\theta-\theta=\pm 60^\circ \Rightarrow\cases{\theta=30^\circ\\ \theta=-30^\circ=330^\circ}  \\ 3\theta-\theta=\pm 60^\circ+360^\circ\Rightarrow \cases{\theta=150^\circ\\ \theta=210^\circ} } \\ \Rightarrow (n,\phi) =\bbox[red,2pt]{(4,330^\circ)}$$
解答:$$令\cases{A=(\sqrt 3+\sqrt 2)^{1000} =(5+2\sqrt 6)^{500}=\sum_{k=0}^{500}{500 \choose k}5^{500-k}  2^k 6^{k/2} \\B=(\sqrt 3-\sqrt 2)^{1000}=(5-2\sqrt 6)^{500} =\sum_{k=0}^{500}{500 \choose k}5^{500-k}(-1)^k 2^k 6^{k/2}}\\ \Rightarrow A+B= 2\sum_{k=0}^{250}{500\choose 2k} 5^{500-2k}24^k 除了最後一項,其餘都是10的倍數\\ 考慮最後一項:2\times24^{500},由於4^n \equiv \cases{4 \mod{10},n是奇數\\ 6 \mod{10},n是偶數},n\in \mathbb N\\ 因此2\times24^{500}\equiv 2\mod{10} \Rightarrow A+B的個位數是2,而0\lt B\lt 1 \\\Rightarrow A=(\sqrt 3+\sqrt 2)^{1000} 的個位數字是\bbox[red, 2pt]1\\ $$
解答:$$抽走3張紅心剩下49張牌(10張紅心及39張非紅心)要分成2組:1組2張,另一組47張,有C^{49}_2分法\\ \Rightarrow \cases{其中一組有2張紅心:機率為C^{10}_2/C^{49}_2\\ 其中一組只有1張紅心:機率為C^{10}_1C^{39}_1 / C^{49}_2} \Rightarrow 期望值:2\cdot {C^{10}_2\over C^{49}_2} +{C^{10}_1C^{39}_1\over C^{49}_2} =\bbox[red, 2pt]{20\over 49}$$
解答
$$\cases{A(-1,0)\\ B(2,0)\\ C(x,y)},作\angle B的角平分線交\overline{AC}於D \Rightarrow \angle DAB=\angle DBA \Rightarrow D在\overline{AB}的中垂線上 \\ \Rightarrow D({1\over 2},a);又\overline{AD}是角平分線,因此{\overline{AD} \over \overline{DC}} ={\overline{AB} \over \overline{BC}} ={3\over \sqrt{(x-2)^2+y^2}} \\ \Rightarrow D={A\cdot \overline{BC}+ 3\cdot C\over \overline{BC}+3} \Rightarrow {1\over 2}={-\sqrt{(x-2)^2+y^2} +3x\over \sqrt{(x-2)^2+y^2} +3} \Rightarrow 6x-3=3\sqrt{(x-2)^2+y^2} \\ \Rightarrow (2x-1)^2=(x-2)^2+y^2 \Rightarrow 3x^2-y^2=3 \Rightarrow x^2=1+{y^2\over 3} \\ \Rightarrow x\gt 1(x=1 \Rightarrow C(1,0)\Rightarrow A,B,C在一直線上無法構成\triangle) \Rightarrow C的軌跡:\bbox[red,2pt]{x^2-{y^2\over 3}=1,x\gt 1}$$
解答:$$(\log ax)(\log ax^2)=4 \Rightarrow (\log a+\log x)(\log a+2\log x)=4 \\ \Rightarrow 2(\log x)^2+ 3\log a\log x+(\log a)^2-4=0 \Rightarrow \log x={ -3\log a\pm \sqrt{ (\log a)^2+32}\over 4}\\ 二根相異且大於1\Rightarrow \log x\gt 0 \Rightarrow -3\log a- \sqrt{ (\log a)^2+32}\gt 0 \\ \Rightarrow 9(\log a)^2 \gt (\log a)^2+32 \Rightarrow (\log a)^2 \gt 4 \Rightarrow \cases{\log a\gt 2 \Rightarrow a\gt 100(不合)\\ \log  a\lt -2 \Rightarrow \bbox[red, 2pt]{0\lt a\lt 1/100}}\\若a\gt 100,則 -3\log a\lt 0\Rightarrow -3\log a- \sqrt{ (\log a)^2+32}\not \gt 0 $$
解答:$$令x=\sqrt 3\sin \theta \Rightarrow dx= \sqrt 3\cos \theta d\theta \Rightarrow \int_{-3/2}^0 {1\over \sqrt{3-x^2}}\,dx = \int_{-\pi/3}^0 {\sqrt 3 \cos \theta \over \sqrt{3\cos^2\theta}}\, d\theta= \int_{-\pi/3}^0 1\, d\theta =\bbox[red, 2pt]{\pi \over 3}$$
解答:$$$$
解答

$$依序累加,作法如上,\bbox[red,2pt]{29933}$$
解答:$$|\vec a|=|\vec b|=|\vec a+\vec b|=1 \Rightarrow \vec a與\vec b夾角120^\circ \Rightarrow \vec a\cdot \vec b=-{1\over 2} \\ 又\cases{\vec a\cdot \vec c=0\\ \vec b\cdot \vec c\lt 0} \Rightarrow \vec a與\vec c夾角90^\circ \Rightarrow \vec c與\vec b夾角=(360^\circ-120^\circ-90^\circ)=150^\circ \Rightarrow \vec c\cdot \vec b=-{\sqrt 3\over 2}\\ \cases{0\le \vec v\cdot \vec a\le 1\\ 0\le \vec v\cdot \vec b\le 1} \Rightarrow \cases{0\le (x\vec a+y\vec c)\cdot \vec a \le 1 \\0\le (x\vec a+y\vec c)\cdot \vec b \le 1} \Rightarrow \cases{0\le x\le 1\\ 0\le -{1\over 2}x-{\sqrt 3\over 2} y \le 1} \\ \Rightarrow {1\over 2}\le -{\sqrt 3\over 2}y \le {3\over 2} \Rightarrow -\sqrt 3\le y\le -{1\over \sqrt 3} \Rightarrow \vec v\cdot \vec c=(x\vec a+ y\vec c)\cdot \vec c=y \Rightarrow 最小值=\bbox[red,2pt]{-\sqrt 3}$$
解答:$$Q\in L_k \Rightarrow Q=(2021t+k,2022t+k,2023t+k) \in E:2y=x+z \\ \Rightarrow d_k的最小值=d(P,E) ={|2-6-4|\over \sqrt 6}={8\over \sqrt 6} =\bbox[red,2pt]{{4\over 3}\sqrt 6}$$

二、計算證明問答題(共 4 題,占 30 分)


解答:$$至少甲乙丙丁四人中的一人,可能一人,二人,三人,四人被選上,不是只有一人被選上$$

解答:$$$$
解答


$$Q在P的右下角,如上圖$$
解答:$$\overline{P_{n+2}P_n} :\overline{P_{n+2}P_{n+1}} =3:1 \Rightarrow x_{n+2}={1\over 4}(3x_{n+1} +x_n) \Rightarrow 4x_n-3x_{n-1}-x_{n-2}=0 \\ \Rightarrow 4\lambda^2-3 \lambda-1=0 \Rightarrow (4\lambda+1)(\lambda-1)=0 \Rightarrow \lambda=-{1\over 4},1\\ \Rightarrow x_n= C_1(-{1\over 4})^n+ C_2,將\cases{x_1=1\\ x_2=2}代入 \Rightarrow \cases{1=-{1\over 4}C_1+C_2\\ 2={1\over 16}C_1+C_2} \Rightarrow \cases{C_1=16/5\\ C_2=9/5} \\ \Rightarrow x_n={16\over 5}(-{1\over 4})^n+ {9\over 5} \Rightarrow \lim_{n\to \infty}x_n= \bbox[red, 2pt]{9\over 5}$$
解答:$$xyz=1 \Rightarrow \cases{x={1\over yz}\\ y={1\over zx}\\ z={1\over xy}}\\ {1\over 3}\left({x\over y}+ {x\over y}+{y\over z}\right) \ge \sqrt[3]{x^2\over yz} = x \cdots(1)\\ {1\over 3}\left({y\over z}+ {y\over z}+{z\over x}\right) \ge \sqrt[3]{y^2\over xz} = y \cdots(2) \\{1\over 3}\left({z\over x}+ {z\over x}+{x\over y}\right) \ge \sqrt[3]{z^2\over xy} = z \cdots(3) \\ (1)+(2)+(3) \Rightarrow {x\over y}+{y\over z}+{z\over x}\ge x+y+z,\bbox[red, 2pt]{故得證}$$

================= END ==============

解題僅供參考,其他教甄試題及詳解

3 則留言:

  1. 老師您好
    請問計算3是不是還沒補齊呢 呵呵
    再麻煩您了 謝謝

    回覆刪除