Loading [MathJax]/jax/output/CommonHTML/jax.js

網頁

2023年9月11日 星期一

112年臺綜大轉學考-工程數學D36詳解

臺灣綜合大學系統112學年度學士班轉學生聯合招生

類組代碼:D36
科目名稱:工程數學

解答(a),y+y=0λ3+λ=0λ(λ2+1)=0λ=0,±iyh=c1+c2cosx+c3sinxr(x)=sinxyp=Axsinxyp=Asinx+Axcosxyp=2AcosxAxsinxyp=3AsinxAxcosxyp+yp=2Asinx=sinxA=12yp=12xsinxy=yh+ypy=c1+c2cosx+c3sinx12xsinx(b)L{y4y}=L{7e2x+x}s2Y(s)sy(0)y(0)4Y(s)=7s2+1s2(s24)Y(s)=s+37s2+1s2Y(s)=s+3s247(s2)2(s+2)+1s2(s24)y(x)=L1{14(s+2)+54(s2)716(s2)74(s2)2716(s+2)14s2116(s+2)+116(s2)}=14e2x+54e2x+716e2x74xe2x716e2xx4116e2x+116e2xy=14(3e2x+7e2x7xe2xx)
解答P=A(ATA)1ATP2=A(ATA)1ATA(ATA)1AT=A(ATA)1AT=PP3=P=16[521222125]
解答A=[abcd]A1=[dadbcbadbccadbcaadbc]det(A1)=adbc(adbc)2=1adbc1
解答bn=2ππ01sin(nx)dx=2π[1ncos(nx)]|π0=2nπ(1(1)n)=4nπ,nf(x)=1=n=1bnsin(nx)=4π(sin(x)+13sin(3x)+15sin(5x)+)f(1)=1=4π(sin1+13sin3+15sin5+)sin1+13sin3+15sin5+=4π,
解答u(x,t)=X(x)T(t),ut=kuxxT=kTkT=XX=λ case I λ>0:XλX=0X=c1eλx+c2eλxX=c1λeλxc2λeλx{X(0)=0X(L)=0{c1λc2λ=0(1)c1λeλLc2λeλL=0(2)(1)c1=c2(2)c1λ(e2λL1)=0c1=0X=0Case II λ=0:X=0X=c1x+c2X=c1{X(0)=0X(L)=0c1=0X=c2,T=0T=c3u(x,t)=c2c3,u(x,t)=CCase III λ=ρ2<0:X+ρ2X=0X=Acosρx+BsinρxX=Aρsinρx+Bρcosρx{X(0)=0X(L)=0{Bρ=0B=0AρsinρL+BρcosρL=0{A=B=0X=0,sinρL=0ρL=nπρ=nπLX=cosnπLx,nN,T+ρ2kT=0T=Ceρ2ktun(x,t)=Ceρ2ktcosnπx/Lλ=0,λ=ρ2,u(x,t)=a0+n=1anekn2π2t/L2cos(nπx/L)limtu(x,t)=a0=1LL0f(x)dxf(x)(0,L)x=
解答(a)f(x,y)=ln(x2+y2+1)+e2xy{fx=2x/(x2+y2+1)+2ye2xyfy=2y/(x2+y2+1)+2xe2xygradient of f=f=(fx,fy)f(0,2)=(4,4/5)(b)f(0,2)vv=(4,45)(7,24)72+242=(4,45)(725,2425)=45(c)minimum value of the directional derivative=f(0,2)f(0,2)f(0,2)=(4)2+(45)2=41625=265 ==================== END ====================
解答僅供參考,其他歷年試題及詳解


沒有留言:

張貼留言