國立雲林科技大學112學年度碩士班招生考試
系所: 電子系
科目: 工程數學(2)
解答: 令{P(x,y)=3x2y+6xy+y2/2Q(x,y)=3x2+y⇒{Py=3x2+6x+yQx=6x⇒Py−QxQ=1⇒取積分因子I(x)=e∫(Py−Qx)/Qdx=e∫1dx=ex⇒{I(x)P(x,y)=(3x2y+6xy+y2/2)exI(x)Q(x,y)=(3x2+y)ex⇒∂∂y(I(x)P(x,y))=∂∂y(I(x)Q(x,y))=(3x2+6x+y)ex⇒Φ(x,y)=∫I(x)P(x,y)dx+ϕ(y)=∫I(x)Q(x,y)dy+ρ(x)又{∫(3x2y+6xy+y2/2)exdx=3x2yex+12y2ex∫(3x2+y)exdy=3x2yex+12y2ex⇒ϕ(y)=ρ(x)=c⇒3x2yex+12y2ex+C=0
解答: 先求齊次解:y″+2y′+y=0⇒λ2+2λ+1=0⇒(λ+1)2=0⇒yh=c1e−x+c2xe−x,再利用變數變換法求yp{y1=e−xy2=xe−xr(x)=xe−x⇒{y′1=−e−xy′2=e−x−xe−x⇒W(y1,y2)=y1y′2−y′1y2=e−2x⇒yp=−y1∫y2rW+y2dx∫y1rWdx=−e−x∫x2dx+xe−x∫xdx=16x3e−x⇒y=yh+yp⇒y=c1e−x+c2xe−x+16x3e−x,c1及c2皆為常數
解答: (a)f(t)=(t+2)2=t2+4t+4⇒L{f(t)}=L{t2}+4L{t}+4L{1}=2s3+4s2+4s(b)L−1{F(S)}=3L−1{1S+3}+3L−1{SS2+(√5)2}=3e−3t+3cos(√5t)
解答: (a)T([x1x2x3x4])=[x1x2x3x4]⋅[2021]=2x1+2x3+x4假設u=[u1u2u3u4],v=[v1v2v3v4],則au+bv=[au1+bv1au2+bv2au3+bv3au4+bv4]⇒T(au+bv)=2(au1+bv1)+2(au3+bv3)+au4+bv4又aT(u)+bT(v)=a(2u1+2u3+u4)+b(2v1+2v3+v4)=2(au1+bv1)+2(au3+bv3)+au4+bv4=T(au+bv)⇒T(au+bv)=aT(u)+bT(v)⇒Tis linear transformation(b)[2021][x1x2x3x4]=2x1+2x3+x4=T(x)⇒A=[2021](c)kernel of A={(x1,x2,x3,x4)∣2x1+2x3+x4=0,x1,x2,x3,x4∈R}
解答: det(A)=−10h−150≠0⇒h≠−15
解答: (a)det(A−λI)=(λ−0.6)(λ−1)=0⇒λ1=0.6,λ2=1λ1=0.6⇒(A−λ1I)x=0⇒x1+32x2=0,取v1=(−3/21)λ2=1⇒(A−λ1I)x=0⇒x1+12x2=0,取v2=(−1/21)因此D=[λ100λ2]⇒D=[0.6001],P=[v1|v2]⇒P=[−3/2−1/211](b)limn→∞An=limn→∞(PDP−1)n=limn→∞PDnP−1=P[0001]P−1=[−3/2−1/211][0001][−1−1/213/2]=[−1/2−3/413/2](c)A−1的特徵值=1λ1,1λ2=53,1
============ END =================
解題僅供參考
沒有留言:
張貼留言