Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

網頁

2023年11月13日 星期一

112年專科學力鑑定-微積分詳解

教育部 112 年自學進修專科學校學力鑑定考試

專業科目(一):微積分

解答: (A)×:f(2)=0f(x)0,(B)×:limx3+f(x)=33(C):limx1+f(x)=limx1f(x)=2limx1f(x)=2(D)×:f(5)(C)
解答: 42f(x)dx=02f(x)dx+40f(x)dx5=02f(x)dx+802f(x)dx=302(3f(x)+x)dx=302f(x)dx+02xdx=3(3)+[12x2]|02=92=11(B)
解答: f(x,y)=x3+xy2+6x2+y2{fx=3x2+y2+12xfy=2xy+2y{fxx=6x+12fxy=2yfyy=2x+2d(x,y)=fxxfyyf2xy=(6x+12)(2x+2)4y2=12(x+2)(x+1)4y2{fxx(0,0)=00fxx(1,3)=6>0fxx(1,3)=6>0fxx(4,0)=12<0d(4,0)=72>0f(4,0)(B)
解答: u=x4,40116+x2dx=10416+16u2du=141011+u2du=14[tan1u]|10=14π4=π16(D)
解答: 40(5xx2)xdx=404xx2dx=[2x213x3]|40=32643=323(B)
解答: f(x)=(x21)2/3f(x)=23(x21)1/32x=43x3x21f(x)>0x>11<x<0(D)
解答: f(x)=sin(12x){f(x)=2cos(12x)f
解答: y=x^{\ln x} =e^{\ln x^{\ln x}} =e^{(\ln x)^2} \Rightarrow y'=2\ln x\cdot {1\over x}e^{(\ln x)^2} ={2\ln x\over x}\cdot x^{\ln x},故選\bbox[red, 2pt]{(A)}
解答: f(3x)=x^2g(2x^3) \Rightarrow 3f'(3x)=2xg(2x^3)+x^2g'(2x^3)\cdot 6x = 2xg(2x^3)+6x^3g'(2x^3)\\ \Rightarrow 3f'(3)=2g(2)+6g'(2) =2\cdot 2+ 6\cdot (-1)=-2 \Rightarrow f'(3)=-{2\over 3},故選\bbox[red, 2pt]{(B)}
解答: f(x)= xe^{\sin x}+1 \Rightarrow f'(x)=e^{\sin x}+ x\cos xe^{\sin x} \Rightarrow f'(\pi) =e^0+\pi \cdot(-1)\cdot e^0=1-\pi\\,故選\bbox[red, 2pt]{(B)}
解答: \cases{e^x= 1+x+x^2/2!+ x^3/3!+\cdots +x^n/n!+\cdots\\ e^{-x} =1-x+x^2/2!-x^3/3!+ \cdots+ (-1)^nx^n/n!+ \cdots} \\\Rightarrow e^x-e^{-x} =2(x+x^3/3!+x^5/5!+\cdots) \Rightarrow {e^x-e^{-x} \over 2}=x+x^3/3!+x^5/5!+\cdots \\ =\sum_{n=0}^\infty{x^{2n+1}\over (2n+1)!},故選\bbox[red, 2pt]{(A)}
解答: \lim_{x\to 0^+}{\ln(e^x-1)\over \ln x} =\lim_{x\to 0^+}{\frac{d }{dx}\ln(e^x-1)\over \frac{d }{dx}\ln x} =\lim_{x\to 0^+}{e^x/(e^x-1)\over 1/x} =\lim_{x\to 0^+} {xe^x\over e^x-1} \\=\lim_{x\to 0^+} {\frac{d }{dx}(xe^x)\over \frac{d }{dx}(e^x-1)}  =\lim_{x\to 0^+}{e^x+xe^x\over e^x} ={1+0\over 1}=1,故選\bbox[red, 2pt]{(A)}
解答: \lim_{n\to \infty}{e^{1/n}+e^{2/n}+ \cdots+ e^{n/n} \over n} =\lim_{n\to \infty} \sum_{k=1}^n\left({1\over n}e^{k/n} \right) =\int_0^1e^x\,dx =e-1,故選\bbox[red, 2pt]{(B)}
解答: {1\over 2}\int_0^{\pi/2} r^2\,d\theta ={1\over 2}\int_0^{\pi/2} 1+2\cos \theta +\cos^2\theta\,d\theta ={1\over 2}\int_0^{\pi/2} 1+2\cos \theta +{1\over 2}(\cos 2\theta+1)\,d\theta \\= {1\over 2}\int_0^{\pi/2}{3\over 2}+2\cos \theta +{1\over 2}\cos 2\theta \,d\theta ={1\over 2}\left. \left[ {3\over 2}\theta+2\sin \theta +{1\over 4}\sin 2\theta \right] \right|_0^{\pi/2} \\={1\over 2}({3\pi\over 4}+2) =1+{3\pi\over 8},故選\bbox[red, 2pt]{(D)}
解答: u=5x \Rightarrow du=5dx \Rightarrow \int \ln(5x)\,dx =\int {1\over 5}\ln u\,du ={1\over 5}(u\ln u-u)+C \\={1\over 5}(5x\ln(5x)-5x)+C =x\ln(5x)-x+C,故選\bbox[red, 2pt]{(C)}
解答: x^3+2x-1=x(x^2-4)+6x-1 \Rightarrow {x^3+2x-1\over x^2-4} =x+{6x-1\over x^2-4} =x+{11\over 4(x-2)}+{13\over 4(x+2)}\\ \Rightarrow \int {x^3+2x-1\over x^2-4}\,dx = \int x\,dx +{11\over 4}\int {1\over x-2}\,dx +{13\over 4}\int {1\over x+2}\,dx \\={1\over 2}x^2+{11\over 4}\ln |x-2| +{13\over 4} \ln|x+2|+C,故選\bbox[red, 2pt]{(D)}
解答: \pi\int_1^2 ({2\over x})^2-1\,dx =\pi \left.\left[ {-4\over x}-x\right] \right|_1^2 =\pi,故選\bbox[red, 2pt]{(C)}
解答: y={2\over 3}x^{3/2} \Rightarrow y'=\sqrt x \Rightarrow 曲線長=\int_1^9 \sqrt{1+y'^2}\,dx =\int_1^9 \sqrt{1+x}\,dx =\left. \left[{2\over 3}(1+x)^{3/2} \right]\right|_1^9 \\={2\over 3}(10^{3/2}-2^{3/2}) ={2\over 3}(10\sqrt {10}-2\sqrt 2),故選\bbox[red, 2pt]{(D)}
解答: F(x,y)={e^x\over \ln y+x^3} \Rightarrow \cases{F_x={e^x\over \ln y+x^3}-{3x^2e^x\over (\ln y+x^3)^2} ={e^x(\ln y+x^3-3x^2e^x)\over (\ln y+x^3)^2}\\ F_y=-{e^x\over y(\ln y+x^3)^2}}\\選項(C)與(D)皆差一個負號,故\bbox[red, 2pt]{(無解)},但公佈的答案是\bbox[cyan,2pt]{(C)}
解答: \int_0^9 \int_{\sqrt x}^3 {1\over y^3+1}\,dydx =\int_0^3\int_0^{y^2}{1\over y^3+1}dxdy =\int_0^3{y^2\over y^3+1}\,dy =\left. \left[{1\over 3}\ln(y^3+1) \right] \right|_0^3 \\={1\over 3}\ln 28,故選\bbox[red, 2pt]{(A)}

================= END =======================

解題僅供參考,其他歷年試題及詳解

沒有留言:

張貼留言