解答:
(a)xy′+3y=2x⇒y′+3xy=2⇒integrating factor I(x)=e∫(3/x)dx=x3⇒x3y′+3x2y=2x3⇒(x3y)′=2x3⇒x3y=∫2x3dx=12x4+c⇒y=12x+cx3(b)y″+5y′+6y=0⇒λ2+5λ+6=0⇒(λ+3)(λ+2)=0⇒λ=−3,−2⇒y=c1e−3x+c2e−2x(c)y=xm⇒y′=mxm−1⇒y″=m(m−1)xm−2⇒x2y″+1.5xy′−0.5y=(m2−m)xm+1.5mxm−0.5xm=(m2+0.5m−0.5)xm=0⇒12(2m−1)(m+1)=0⇒m=12,−1⇒y=c1√x+c2xx
解答:{P(x,y)=3x2y+6xy+y22Q(x,y)=3x2+y⇒{Py=3x2+6x+yQx=6x⇒Py≠Qx⇒NOT exactPy−QxQ=1 independent of x⇒u′=u⇒ integration factor u=ex⇒(exP)dx+(exQ)dy=0⇒potential Φ(x,y) satisfying{Φx=exPΦy=exQ⇒Φ=∫3x2yex+6xyex+y22exdx=∫3x2ex+yexdy⇒Φ=3x2yex+y22ex+ϕ(y)=3x2yex+12y2ex+ρ(x)⇒3x2yex+y22ex+c=0解答:\先求齊次解,y″+2y′+y=0⇒λ2+2λ+1=0⇒(λ+1)2=0⇒λ=−1⇒yh=c1e−x+c2xe−x再利用 varation of parameter求特解,{y1=e−xy2=xe−xr(x)=xe−x⇒W=|y1y2y′1y′2|=e−2x⇒yp=−y1∫y2rWdx+y2∫y1rWdx=−e−x∫x2dx+xe−x∫xdx=16x3e−x⇒y=yh+yp⇒y=c1e−x+c2xe−x+16x3e−x
解答:(a)L{(t+2)2}=L{t2+4t+4}=2s3+4s2+4s(b)L−1{3s+3}+L−1{3ss2+5}=3e−3t+3cos(√5t)

解答:(a)令{u=[x1,x2,x3,x4]Tv=[y1,y2,y3,y4]T⇒au+bv=[ax1+by1,ax2+by2,ax3+by3,ax4+by4]T⇒T(au+bv)=[ax1+by1,ax2+by2,ax3+by3,ax4+by4]T⋅[2,0,2,1]T=2(ax1+by1)+2(ax3+by3)+(ax4+by4)又aT(u)+bT(v)=a(2x1+2x3+x4)+b(2y1+2y3+y4)=2(ax1+by1)+2(ax3+by3)+(ax4+by4)因此T(au+bv)=aT(u)+bT(v)⇒T is a linear transformationQ.E.D(b)A=[2,0,2,1](c)Ax=0⇒2x1+2x3+x4=0⇒ker(A)={α(100−2)+β(0100)+γ(001−2)∣α,β,γ∈R}

解答:det(A)=−10h−150≠0⇒h≠−10
解答:(a)det(A−λI)=0⇒(λ−35)(λ−1)=0⇒λ=1,35λ1=35⇒(A−λ1I)v=0⇒v=k(−3/21),取v1=(−3/21)λ2=1⇒(A−λ2I)v=0⇒v=k(−1/21),取v2=(−1/21)⇒P=[−3/2−1/211],D=[3/5001](b)limn→∞An=limn→∞(PDP−1)n=limn→∞PDnP−1=[−3/2−1/211][0001][−1−1/213/2]=[−1/2−3/413/2](c)eigenvalues of A−1=1λ1,1λ2=53,1
沒有留言:
張貼留言