Loading [MathJax]/jax/output/CommonHTML/jax.js

網頁

2023年12月10日 星期日

112年雲科大電子系碩士班-工程數學詳解

 



解答:
(a)xy+3y=2xy+3xy=2integrating factor I(x)=e(3/x)dx=x3x3y+3x2y=2x3(x3y)=2x3x3y=2x3dx=12x4+cy=12x+cx3(b)y+5y+6y=0λ2+5λ+6=0(λ+3)(λ+2)=0λ=3,2y=c1e3x+c2e2x(c)y=xmy=mxm1y=m(m1)xm2x2y+1.5xy0.5y=(m2m)xm+1.5mxm0.5xm=(m2+0.5m0.5)xm=012(2m1)(m+1)=0m=12,1y=c1x+c2xx
解答:{P(x,y)=3x2y+6xy+y22Q(x,y)=3x2+y{Py=3x2+6x+yQx=6xPyQxNOT exactPyQxQ=1 independent of xu=u integration factor u=ex(exP)dx+(exQ)dy=0potential Φ(x,y) satisfying{Φx=exPΦy=exQΦ=3x2yex+6xyex+y22exdx=3x2ex+yexdyΦ=3x2yex+y22ex+ϕ(y)=3x2yex+12y2ex+ρ(x)3x2yex+y22ex+c=0
解答:\先y+2y+y=0λ2+2λ+1=0(λ+1)2=0λ=1yh=c1ex+c2xex varation of parameter,{y1=exy2=xexr(x)=xexW=|y1y2y1y2|=e2xyp=y1y2rWdx+y2y1rWdx=exx2dx+xexxdx=16x3exy=yh+ypy=c1ex+c2xex+16x3ex


解答:(a)L{(t+2)2}=L{t2+4t+4}=2s3+4s2+4s(b)L1{3s+3}+L1{3ss2+5}=3e3t+3cos(5t)



解答:(a){u=[x1,x2,x3,x4]Tv=[y1,y2,y3,y4]Tau+bv=[ax1+by1,ax2+by2,ax3+by3,ax4+by4]TT(au+bv)=[ax1+by1,ax2+by2,ax3+by3,ax4+by4]T[2,0,2,1]T=2(ax1+by1)+2(ax3+by3)+(ax4+by4)aT(u)+bT(v)=a(2x1+2x3+x4)+b(2y1+2y3+y4)=2(ax1+by1)+2(ax3+by3)+(ax4+by4)T(au+bv)=aT(u)+bT(v)T is a linear transformationQ.E.D(b)A=[2,0,2,1](c)Ax=02x1+2x3+x4=0ker(A)={α(1002)+β(0100)+γ(0012)α,β,γR}

解答:det(A)=10h1500h10

解答:(a)det(AλI)=0(λ35)(λ1)=0λ=1,35λ1=35(Aλ1I)v=0v=k(3/21),v1=(3/21)λ2=1(Aλ2I)v=0v=k(1/21),v2=(1/21)P=[3/21/211],D=[3/5001](b)limnAn=limn(PDP1)n=limnPDnP1=[3/21/211][0001][11/213/2]=[1/23/413/2](c)eigenvalues of A1=1λ1,1λ2=53,1

沒有留言:

張貼留言