Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

網頁

2024年1月2日 星期二

111年台科大機械碩士班-工程數學詳解

國立臺灣科技大學111學年度碩士班招生考試

系所組別:機械工科甲乙丙丁組
科目:工程數學

解答:(a)y16y=0yh=c1e4x+c2e4xyp=Axe4xyp=Ae4x+4Axe4xyp=8Ae4x+16Axe4xyp16yp=8Ae4x=2e4xA=14y=yh+ypy=c1e4x+c2e4x+14xe4x(b)y+y=0yh=c1cosx+c2sinxLet {y1=cosxy2=sinxW=|y1y2y1y2|=|cosxsinxsinxcosx|=1yp=cosxsinx(4x+10sinx)dx+sinxcosx(4x+10sinx)dx=cosx(5x+4sinx4xcosx5sinxcosx)+sinx(4xsinx5cos2x+4cosx)=5xcosx+4xy=yh+yp=c1cosx+c2sinx5xcosx+4xy=c1sinx+c2cosx5cosx+5xsinx+4{y(π)=c1+9π=0y(π)=c2+9=2{c1=9πc2=7y=9πcosx+7sinx5xcosx+4x
解答:a1=v1=(1111)e1=a1a1=(12121212)a2=v2(v2e1)e1=(94343434)e2=a2a2=(32363636)a3=v3(v3e1)e1(v3e2)e2=v3e1+3e2=(0112)e3=a1a3=(0666663)orthonormal vector set ={(12121212),(32363636),(0666663)}
解答:L1{s+3(s+2)(s2+2s+2}=L1{12(s+2)+s+22(s2+2s+2)}=L1{12(s+2)12s+1(s+1)2+1+321(s+1)2+1}=12e2t12etcost+32etsint
解答:A=[201210100]2R3+R1R1,2R3+R2R2[001010100]R1R3[100010001]R1,R2[100010001]rank(A)=3linearly indepententdet
解答:\\c_n= {1\over 2\pi} \int_{-\pi}^\pi e^{-x}e^{in x}dx ={1\over 2\pi} \left. \left[ {1\over in-1}e^{(in-1)x} \right] \right|_{-\pi}^\pi ={1\over 2\pi(in-1)}\left( e^{in\pi} \cdot e^{-\pi} -e^{-in\pi}\cdot e^\pi\right) \\= {1\over 2\pi(in-1)}(-1)^n(e^{-\pi}-e^\pi) \\ \Rightarrow \bbox[red, 2pt]{f(x)= \sum_{n=-\infty}^\infty c_ne^{-inx}, \text{ where }c_n={1\over 2\pi(in-1)}(-1)^n(e^{-\pi}-e^\pi)}
解答:T(x,y)=X(x)Y(y) \Rightarrow \nabla^2 T(x,y)=0 \Rightarrow X''Y+XY''=0 \\ \cases{ T(0,y)=1\\ T(\infty,y)=0\\ \frac{\partial T}{\partial y}(x,0)=0 \\ T(x,1)=0}\Rightarrow \cases{X(0)Y(y)=1\\ X(\infty)Y(y)=0\\ \Rightarrow X(x)Y'(0)=0\\ T(x)Y(1)=0} \Rightarrow \cases{X(\infty)=0\\ Y'(0)=0\\ Y(1)=0}\\ X''Y+ XY''=0 \Rightarrow {X''\over X}=-{Y''\over Y}=\mu\\ \text{Case I: }\mu=0 \Rightarrow Y''=0 \Rightarrow Y=ay+b \Rightarrow Y'=a \Rightarrow \cases{Y'(0)=0\\ Y(1)=0} \Rightarrow \cases{a=0\\ a+b=0} \\ \qquad \Rightarrow a=b=0 \Rightarrow Y=0\\ \text{Case II: }\mu \lt 0 \Rightarrow 假設\mu= -\rho^2(\rho\gt 0) \Rightarrow Y''-\rho^2 Y=0 \Rightarrow Y= c_1e^{\rho y}+ c_2 e^{-\rho y} \\ \qquad \Rightarrow Y'= c_1\rho e^{\rho y}-c_2\rho e^{-\rho y} \Rightarrow \cases{Y'(0)=0\\ Y(1)=0} \Rightarrow \cases{(c_1-c_2)\rho =0\\ c_1e^\rho +c_2e^{-\rho}=0} \Rightarrow \cases{ c_1=c_2\\ c_1e^{2\rho}+c_2=0} \\\qquad \Rightarrow c_1(e^{2\rho}+1)=0 \Rightarrow c_1=c_2=0 \Rightarrow Y=0\\ \text{Case III: }\mu \gt 0 \Rightarrow 假設\mu=\rho^2 (\rho\gt 0) \Rightarrow Y''+\rho^2 Y=0 \Rightarrow Y=A\cos \rho x+B\sin \rho x \\ \qquad \Rightarrow Y'=-A\rho \sin \rho x+B \rho \cos \rho x \Rightarrow \cases{Y'(0)=0\\ Y(1)=0} \Rightarrow \cases{B\rho =0\\ A\cos \rho +B\sin \rho=0} \\ \qquad \Rightarrow B=0 \Rightarrow A\cos \rho=0 \Rightarrow \cos \rho=0 \Rightarrow \rho = {2n-1\over 2}\pi, n=1,2,\dots \\ \qquad \Rightarrow Y=A \cos {2n-1\over 2}\pi y, n=1,2,\dots\\ {X''\over X}=\mu= \rho^2 \Rightarrow X''-\rho^2X=0 \Rightarrow X=c_1e^{ \rho x}+c_2 e^{- \rho x}, 又X(\infty)=0 \Rightarrow c_1=0\\ \Rightarrow X=c_2e^{-\rho x}= c_2e^{-(2n-1)x/2} \Rightarrow T=XY = c_2e^{-(2n-1)x/2} A \cos {2n-1\over 2}\pi y, n=1,2,\dots \\ \Rightarrow T=\sum_{n=1}^\infty a_ne^{-(2n-1)x/2}\cos {2n-1\over 2}\pi y \\ T(0,y)=1 \Rightarrow \sum_{n=1}^\infty a_n \cos {2n-1\over 2}\pi y=1 \Rightarrow a_n=  \int_0^2 \cos {2n-1\over 2}\pi y\,dy ={-4\over (2n-1)\pi} \\ \Rightarrow \bbox[red, 2pt]{T(x,y)=\sum_{n=1}^\infty {-4\over (2n-1)\pi}e^{-(2n-1)x/2}\cos {2n-1\over 2}\pi y}

==================== END ===========================

解題僅供參考,其他歷年試題及詳解

沒有留言:

張貼留言