國立臺灣科技大學111學年度碩士班招生考試
系所組別:機械工科甲乙丙丁組
科目:工程數學
解答:(a)y″−16y=0⇒yh=c1e4x+c2e−4xyp=Axe4x⇒y′p=Ae4x+4Axe4x⇒y″p=8Ae4x+16Axe4x⇒y″p−16yp=8Ae4x=2e4x⇒A=14y=yh+yp⇒y=c1e4x+c2e−4x+14xe4x(b)y″+y=0⇒yh=c1cosx+c2sinxLet {y1=cosxy2=sinx⇒W=|y1y2y′1y′2|=|cosxsinx−sinxcosx|=1⇒yp=−cosx∫sinx(4x+10sinx)dx+sinx∫cosx(4x+10sinx)dx=−cosx(5x+4sinx−4xcosx−5sinxcosx)+sinx(4xsinx−5cos2x+4cosx)=−5xcosx+4x⇒y=yh+yp=c1cosx+c2sinx−5xcosx+4x⇒y′=−c1sinx+c2cosx−5cosx+5xsinx+4⇒{y(π)=−c1+9π=0y′(π)=−c2+9=2⇒{c1=9πc2=7⇒y=9πcosx+7sinx−5xcosx+4x解答:→a1=→v1=(111−1)⇒→e1=→a1‖→a1‖=(121212−12)→a2=→v2−(→v2⋅→e1)→e1=(94−34−3434)⇒→e2=→a2‖→a2‖=(√32−√36−√36√36)→a3=→v3−(→v3⋅→e1)→e1−(→v3⋅→e2)→e2=→v3−→e1+√3→e2=(0112)⇒→e3=→a1‖→a3‖=(0√66√66√63)⇒orthonormal vector set ={(121212−12),(√32−√36−√36√36),(0√66√66√63)}
解答:L−1{s+3(s+2)(s2+2s+2}=L−1{12(s+2)+−s+22(s2+2s+2)}=L−1{12(s+2)−12⋅s+1(s+1)2+1+32⋅1(s+1)2+1}=12e−2t−12e−tcost+32e−tsint
解答:A=[2012−10−100]2R3+R1→R1,2R3+R2→R2→[0010−10−100]R1↔R3→[−1000−10001]−R1,−R2→[100010001]⇒rank(A)=3⇒linearly indepententdet
解答:\\c_n= {1\over 2\pi} \int_{-\pi}^\pi e^{-x}e^{in x}dx ={1\over 2\pi} \left. \left[ {1\over in-1}e^{(in-1)x} \right] \right|_{-\pi}^\pi ={1\over 2\pi(in-1)}\left( e^{in\pi} \cdot e^{-\pi} -e^{-in\pi}\cdot e^\pi\right) \\= {1\over 2\pi(in-1)}(-1)^n(e^{-\pi}-e^\pi) \\ \Rightarrow \bbox[red, 2pt]{f(x)= \sum_{n=-\infty}^\infty c_ne^{-inx}, \text{ where }c_n={1\over 2\pi(in-1)}(-1)^n(e^{-\pi}-e^\pi)}
解答:T(x,y)=X(x)Y(y) \Rightarrow \nabla^2 T(x,y)=0 \Rightarrow X''Y+XY''=0 \\ \cases{ T(0,y)=1\\ T(\infty,y)=0\\ \frac{\partial T}{\partial y}(x,0)=0 \\ T(x,1)=0}\Rightarrow \cases{X(0)Y(y)=1\\ X(\infty)Y(y)=0\\ \Rightarrow X(x)Y'(0)=0\\ T(x)Y(1)=0} \Rightarrow \cases{X(\infty)=0\\ Y'(0)=0\\ Y(1)=0}\\ X''Y+ XY''=0 \Rightarrow {X''\over X}=-{Y''\over Y}=\mu\\ \text{Case I: }\mu=0 \Rightarrow Y''=0 \Rightarrow Y=ay+b \Rightarrow Y'=a \Rightarrow \cases{Y'(0)=0\\ Y(1)=0} \Rightarrow \cases{a=0\\ a+b=0} \\ \qquad \Rightarrow a=b=0 \Rightarrow Y=0\\ \text{Case II: }\mu \lt 0 \Rightarrow 假設\mu= -\rho^2(\rho\gt 0) \Rightarrow Y''-\rho^2 Y=0 \Rightarrow Y= c_1e^{\rho y}+ c_2 e^{-\rho y} \\ \qquad \Rightarrow Y'= c_1\rho e^{\rho y}-c_2\rho e^{-\rho y} \Rightarrow \cases{Y'(0)=0\\ Y(1)=0} \Rightarrow \cases{(c_1-c_2)\rho =0\\ c_1e^\rho +c_2e^{-\rho}=0} \Rightarrow \cases{ c_1=c_2\\ c_1e^{2\rho}+c_2=0} \\\qquad \Rightarrow c_1(e^{2\rho}+1)=0 \Rightarrow c_1=c_2=0 \Rightarrow Y=0\\ \text{Case III: }\mu \gt 0 \Rightarrow 假設\mu=\rho^2 (\rho\gt 0) \Rightarrow Y''+\rho^2 Y=0 \Rightarrow Y=A\cos \rho x+B\sin \rho x \\ \qquad \Rightarrow Y'=-A\rho \sin \rho x+B \rho \cos \rho x \Rightarrow \cases{Y'(0)=0\\ Y(1)=0} \Rightarrow \cases{B\rho =0\\ A\cos \rho +B\sin \rho=0} \\ \qquad \Rightarrow B=0 \Rightarrow A\cos \rho=0 \Rightarrow \cos \rho=0 \Rightarrow \rho = {2n-1\over 2}\pi, n=1,2,\dots \\ \qquad \Rightarrow Y=A \cos {2n-1\over 2}\pi y, n=1,2,\dots\\ {X''\over X}=\mu= \rho^2 \Rightarrow X''-\rho^2X=0 \Rightarrow X=c_1e^{ \rho x}+c_2 e^{- \rho x}, 又X(\infty)=0 \Rightarrow c_1=0\\ \Rightarrow X=c_2e^{-\rho x}= c_2e^{-(2n-1)x/2} \Rightarrow T=XY = c_2e^{-(2n-1)x/2} A \cos {2n-1\over 2}\pi y, n=1,2,\dots \\ \Rightarrow T=\sum_{n=1}^\infty a_ne^{-(2n-1)x/2}\cos {2n-1\over 2}\pi y \\ T(0,y)=1 \Rightarrow \sum_{n=1}^\infty a_n \cos {2n-1\over 2}\pi y=1 \Rightarrow a_n= \int_0^2 \cos {2n-1\over 2}\pi y\,dy ={-4\over (2n-1)\pi} \\ \Rightarrow \bbox[red, 2pt]{T(x,y)=\sum_{n=1}^\infty {-4\over (2n-1)\pi}e^{-(2n-1)x/2}\cos {2n-1\over 2}\pi y}
==================== END ===========================
解題僅供參考,其他歷年試題及詳解
沒有留言:
張貼留言