國立臺北科技大學 111學年度碩士班 招 生考試
系所組別 :2142電機工程系碩士班丁組
第一節 線性代數 試題 (選考)

解答:(1)Ax=0⇒[1−32−4005−700050000][x1x2x3x4]=0⇒{x1−3x2+3x3−4x4=05x3=7x4x4=0⇒x=x2(3100)⇒a basis of NULL(A)={(3100)}(2)Rank(A)=3(3)det(A)=0(4)Suppose B=A−1,then AB=I⇒det(AB)=det(I)=1. But det(AB)=det(A)det(B)=0⋅det(B)=0≠1.That is A is Not invertible

解答:(1)‖ACQx‖2=(ACQx)TACQx=xTQTCTATACQx=xTQTCTICQx=xTQTIQx=xTx=‖x‖2⇒‖ACQx‖=‖x‖,QED(2)If one diagonal element of B is zero, thendet(H)=det(ABC)=det(A)det(B)det(C)=0⇒det(H)=0⇒H is invertible,QED(3)A−1=AT=AH⇒A−1=AH,QED
解答:(1)ATA=(1−102−2235)(1−2−120325)=(66642)ATb=(1−102−2235)(31−42)=(6−6)⇒(66642)(x1x2)=(6−6)⇒{x1+x2=1x1+7x2=−1⇒{x1=4/3x2=−1/3⇒x=(4/3−1/3)(b)To minimize the distance from Aˆx to b,i.e.,‖b−Aˆx‖
解答:"⇒":Ax=0⇒AH(Ax)=AH(0)=0⇒AHAx=0"⇐":AHAx=0⇒xHAHAx=0⇒‖Ax‖2=0⇒Ax=0Q.E.D.

解答:(1)假設A的N個 row vectors: →a1,→a2,…→aN,即A=[→a1→a2⋮→aN]及x=[x1x2⋮xn]Ax=0⇒x1→a1+x2→a2+⋯+xn→aN=0由於→a1,→a2,…→aN為線性獨立,因此x1=x2=⋯=xN=0,即x=0為唯一的明顯解.Q.E.D.

解答:T(a0+a1t+a2t2)=2a0+(5a0−2a1)t+(4a1+a2)t2⇒A[a0a1a2]=[2a05a0−2a14a1+a2]⇒A=[2005−20041]
=========================== END ==============================
解題僅供參考, 其他歷年試題及詳解
沒有留言:
張貼留言