Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

網頁

2024年4月12日 星期五

113年暨大電機碩士班-工程數學詳解

 國立暨南國際大學113學年度碩士班入學考試

科目:工程數學(線性代數、微分方程)

解答: (a)det(A)=0+12+1230+24=45(b)[AI]=[223100216010120001]R12R3R1,R2+2R3R2[063102036012120001]R3R3,R2/3R2[06310201201323120001]R16R2R1,R22R2R3[00151220120132310402313]R1R3[10402313012013230015122]R3/(15)R3[1040231301201323001115215215]R1+4R3R1,R22R3R2[1004152151501021511525001115215215]A1=[4152151521511525115215215](c)det(AλI)=(λ+3)2(λ5)=0λ=3,5λ1=3(Aλ1I)v=0[123246123][x1x2x3]=0x1+2x2=3x3v=x2(210)+x3(301),choose v1=(210),v2=(301)λ2=5(Aλ2I)v=0[723246125][x1x2x3]=0{x1+x3=0x2+2x3=0v=x3(121), choose v3=(121)eigenvalues: 3,5 and eigenvectors: (210),(301),(121)(d)AB=[223216120][582]=[0621](e)rref(A)=[100010001]Ax=0[100010001][x1x2x3]=0x=[000]



解答{kx1+x2+x3=2kx1+kx2+x3=3x1+x2+kx3=1[k111k111k][x1x2x3]=[2k31]Ax=b(a)det(A)=k33k+2=(k1)2(k+2)0k1,k2(b)k=1{x1+x2+x3=2x1+x2+x3=3x1+x2+x3=1,no solution (c)k=2A=[211121112]rref(A)=[101011000],infinitely many solutions(d)x1=|2k113k111k|det(A)=2k36k+4k33k+2=2,x2=|k2k113111k|det(A)=k2+k2k33k+2=1k1x3=|k12k1k3111|det(A)=k2k+2k33k+2=1k1[x1x2x3]=[21/(k1)1/(k1)](e)k=0[x1x2x3]=[21/(k1)1/(k1)]=[211]


解答: (a)y1=xAy1=AxA1y1

解答: \textbf{(a)}\; \cases{P(x,y)= e^{x+y}+ 2xye^y\\ Q(x,y)=x^2e^y-2e^{-y}} \Rightarrow \cases{P_y=e^{x+y}+2xe^y+2xye^y \\Q_x=2xe^y}\\\quad  \Rightarrow -{P_y-Q_x\over P} =-{e^{x+y} +2xye^y \over e^{x+y}+2xye^y} =-1 \Rightarrow u'=-u \Rightarrow \text{integrating factor }\bbox[red, 2pt]{u(y)=e^{-y}} \\\textbf{(b)}\; \cases{uP = e^{x}+ 2xy\\ uQ=x^2-2e^{-2y}} \Rightarrow \cases{(uP)_y= 2x\\ (uQ)_x=2x} \Rightarrow \text{exact} \\\quad \Rightarrow \Phi(x,y)=\int (e^x+2xy)\,dx = \int (x^2-2e^{-2y})\,dy \\\quad \Rightarrow \Phi(x,y)= e^x+x^2y+ \phi(y) =x^2y+e^{-2y}+ \rho(x) \\ \Rightarrow \bbox[red, 2pt]{e^x+ x^2y +e^{-2y}=C}

解答: \textbf{(a)}\; y_1=e^{-2x} \Rightarrow y_1'=-2e^{-2x} \Rightarrow y_1''=4e^{-2x} \Rightarrow y''+y'+Ey=(2+E)e^{-2x}=0 \\ \quad \Rightarrow \bbox[red, 2pt]{E=-2} \\ \textbf{(b)}\; y''+y'-2y =0 \Rightarrow \lambda^2+\lambda-2=0 \Rightarrow (\lambda+2)( \lambda-1)=0 \Rightarrow \lambda=1,-2 \\\quad \Rightarrow \bbox[red, 2pt]{ y=c_1e^x +c_2e^{-2x}}

================ END =================

解題僅供參考,其他歷年試題及詳解

沒有留言:

張貼留言