國立暨南國際大學113學年度碩士班入學考試
科目:工程數學(線性代數、微分方程)
解答: (a)det(A)=0+12+12−3−0+24=45(b)[A∣I]=[−22−310021−6010−1−20001]R1−2R3→R1,R2+2R3→R2→[06−310−20−3−6012−1−20001]−R3→R3,−R2/3→R2→[06−310−20120−13−2312000−1]R1−6R2→R1,R2−2R2→R3→[00−151220120−13−2310−402313]R1↔R3→[10−4023130120−13−2300−15122]R3/(−15)→R3→[10−4023130120−13−23001−115−215−215]R1+4R3→R1,R2−2R3→R2→[100−415215−15010215−115−25001−115−215−215]⇒A−1=[−415215−15215−115−25−115−215−215](c)det(A−λI)=−(λ+3)2(λ−5)=0⇒λ=−3,5λ1=−3⇒(A−λ1I)v=0⇒[12−324−6−1−23][x1x2x3]=0⇒x1+2x2=3x3⇒v=x2(−210)+x3(301),choose v1=(−210),v2=(301)λ2=5⇒(A−λ2I)v=0⇒[−72−32−4−6−1−2−5][x1x2x3]=0⇒{x1+x3=0x2+2x3=0⇒v=x3(−1−21), choose v3=(−1−21)⇒eigenvalues: −3,5 and eigenvectors: (−210),(301),(−1−21)(d)AB=[−22−321−6−1−20][582]=[06−21](e)rref(A)=[100010001]⇒Ax=0⇒[100010001][x1x2x3]=0⇒x=[000]解答: {kx1+x2+x3=2kx1+kx2+x3=3x1+x2+kx3=1⇒[k111k111k][x1x2x3]=[2k31]≡Ax=b(a)det(A)=k3−3k+2=(k−1)2(k+2)≠0⇒k≠1,k≠−2(b)k=1⇒{x1+x2+x3=2x1+x2+x3=3x1+x2+x3=1,no solution (c)k=−2⇒A=[−2111−2111−2]⇒rref(A)=[10−101−1000],infinitely many solutions(d)x1=|2k113k111k|det(A)=2k3−6k+4k3−3k+2=2,x2=|k2k113111k|det(A)=k2+k−2k3−3k+2=1k−1x3=|k12k1k3111|det(A)=−k2−k+2k3−3k+2=−1k−1⇒[x1x2x3]=[21/(k−1)−1/(k−1)](e)k=0⇒[x1x2x3]=[21/(k−1)−1/(k−1)]=[2−11]
解答: (a)y1=xA⇒y′1=AxA−1⇒y1″
解答: \textbf{(a)}\; \cases{P(x,y)= e^{x+y}+ 2xye^y\\ Q(x,y)=x^2e^y-2e^{-y}} \Rightarrow \cases{P_y=e^{x+y}+2xe^y+2xye^y \\Q_x=2xe^y}\\\quad \Rightarrow -{P_y-Q_x\over P} =-{e^{x+y} +2xye^y \over e^{x+y}+2xye^y} =-1 \Rightarrow u'=-u \Rightarrow \text{integrating factor }\bbox[red, 2pt]{u(y)=e^{-y}} \\\textbf{(b)}\; \cases{uP = e^{x}+ 2xy\\ uQ=x^2-2e^{-2y}} \Rightarrow \cases{(uP)_y= 2x\\ (uQ)_x=2x} \Rightarrow \text{exact} \\\quad \Rightarrow \Phi(x,y)=\int (e^x+2xy)\,dx = \int (x^2-2e^{-2y})\,dy \\\quad \Rightarrow \Phi(x,y)= e^x+x^2y+ \phi(y) =x^2y+e^{-2y}+ \rho(x) \\ \Rightarrow \bbox[red, 2pt]{e^x+ x^2y +e^{-2y}=C}

解答: \textbf{(a)}\; y_1=e^{-2x} \Rightarrow y_1'=-2e^{-2x} \Rightarrow y_1''=4e^{-2x} \Rightarrow y''+y'+Ey=(2+E)e^{-2x}=0 \\ \quad \Rightarrow \bbox[red, 2pt]{E=-2} \\ \textbf{(b)}\; y''+y'-2y =0 \Rightarrow \lambda^2+\lambda-2=0 \Rightarrow (\lambda+2)( \lambda-1)=0 \Rightarrow \lambda=1,-2 \\\quad \Rightarrow \bbox[red, 2pt]{ y=c_1e^x +c_2e^{-2x}}
================ END =================
解題僅供參考,其他歷年試題及詳解
沒有留言:
張貼留言