國立中央大學113學年度碩士班考試入學
所別:光電類
科目:工程數學
解答:(a)W[sin(x),ex]=|sinxexcosxex|=ex(sinx−cosx)≠0, if x=0⇒ linearly independent(b)W[ex,ex+2]=|exex+2exex+2|=0,∀x⇒ linearly dependent解答:y″+5y′+6y=0⇒λ2+5λ+6=0⇒(λ+3)(λ+2)=0⇒λ=−3,−2⇒yh=c1e−2x+c2e−3xyp=Ax2+Bx+C⇒y′p=2Ax+B⇒y″p=2A⇒y″p+5y′p+6yp==6Ax2+(10A+6B)x+2A+5B+6C=2x+1⇒{A=010A+6B=22A+5B+6C=1⇒{A=2B=1/3C=−1/9⇒yp=13x−19⇒y=yh+yp⇒y=c1e−2x+c2e−3x+13x−19
解答:xy″+y′=0⇒(xy′)′=0⇒xy′=c1⇒y′=c1x⇒y=c1lnx+c2
解答:L{x″(t)}+L{x(t)}=L{f(t)}=s2X(s)−sx(0)−x′(0)+X(s)=∫51e−stdt⇒(s2+1)X(s)=1se−s−1se−5s⇒X(s)=1s(s2+1)e−s−1s(s2+1)e−5s⇒x(t)=L−1{X(s)}⇒x(t)=u(t−1)(1−cos(t−1))+u(t−5)(cos(t−5)−1)
解答:f(t)=|t|⇒f(−t)=f(t)⇒f(t) is even ⇒bn=0a0=12∫1−1|t|dt=∫10tdt=12an=∫1−1|t|cos(nπt)dt=2∫10tcos(nπt)dt=2n2π2((−1)n−1)⇒F(f(t))=12+∞∑n=12n2π2((−1)n−1)cos(nπt)dt
解答:The boundary curve will be the circle of radius 2 that is in the plane z=0The parameterization of this curve is, →r=[2cost,2sint,0],0≤t≤2πUsing Stokes' theorem, we have∬S(∇×→F)⋅→ndA=∫2π0→F(→r(t))⋅→r′(t)dt=∫2π0[8cos2tsint,−8costsin2t,0]⋅[−2sint,2cost,0]dt=∫2π0−32cos2tsin2tdt=∫2π0−8sin2(2t)dt=∫2π0−4(1−cos(4t))dt=−8π
解答:A=[−1112−6326−5]⇒A−1=[37112892847328528672717]⇒[x1x2x3]=A−1[−548]=[37112892847328528672717][−548]=[2−1−2]⇒{x1=2x2=−1x3=−2
解答:A=[1−124]⇒det(A−λI)=(λ−2)(λ−3)⇒f(λ)=λ17=c1+c2λ⇒{f(2)=217=c1+2c2f(3)=317=c1+3c2⇒{c1=3⋅217−2⋅317c2=317−217⇒A17=f(A)=c1I+c2A=(3⋅217−2⋅317)I+(317−217)A=[3⋅217−2⋅317003⋅217−2⋅317]+[(317−217)−(317−217)2(317−217)4(317−217)]=[218−317217−3172⋅317−2182⋅317−217]
解答:(a)f(t)=cos2(2πt)=12cos(4πt)+12=14(e4πti+e−4πti)+12⇒F(ω)=1√2π∫∞−∞(14(e4πti+e−4πti)+12)e−iωtdt=1√2π∫∞−∞(14e−i(ω−4π)t+14e−i(ω+4π)t+12e−iωt)dt=1√2π(2π4(δ(ω−4π)+δ(ω+4π)+12⋅2πδ(ω))=√2π4(δ(ω−4π)+δ(ω+4π)+2δ(ω))(b)g(t)={10≤t≤10otherwise ⇒G(ω)=1√2π∫10e−iωtdt=1√2π[1−iωe−iωt]|10=1√2π⋅1−iω(e−iω−1)⇒G(ω)=iω√2π(e−iω−1)h(t)={10≤t≤1/20 otherwise ⇒H(ω)=1√2π∫1/20e−iωtdt=1√2π[1−iωe−iωt]|1/20=1√2π⋅1−iω(e−iω/2−1)⇒H(ω)=iω√2π(e−iω/2−1)
======================== END =========================
解題僅供參考,其他碩士班歷年考題
沒有留言:
張貼留言