彰化女中113 學年度教師甄選數學科試題卷
一、填充題(每5 分,共90 分)
解答:√(x+5)2+(y+4)2+25+√(x−3)2+(y−5)2+49=¯PA+¯PB,其中{P(x,y,0)A(−5,−4,−5)B(3,5,7)⇒¯PA+¯PB≤¯AB=√82+92+122=√289=17解答:{三點共線有16種四點共線有4種五點共線有12種⇒可形成三角形的機率=C253−16C33−4C43−12C53C253=2300−16−16−1202300=21482300=537575
解答:f(x)=x+2x+649(xx2−x+2)⇒f′(x)=1−2x2+649(1x2−x+2−x(2x−1)(x2−x+2)2)=x2(x2−x+2)2−2(x2−x+2)2x2(x2−x+2)2+649(x2−x+2−2x2+x(x2−x+2)2)=(x2−2)(x2−x+2)2x2(x2−x+2)2−649⋅x2−2(x2−x+2)2=(x2−2)(x2−x+2)2x2(x2−x+2)2−649⋅x2(x2−2)x2(x2−x+2)2=x2−2x2(x2−x+2)2((x2−x+2)2−(8x3)2)=x2−2x2(x2−x+2)2(x2−113x+2)(x2+53x+2)f(x)最小值出現在x2−113x+2=0⇒兩根之和=113
解答:limx→1x2f(1)−f(x2)x−1=limx→1(x2f(1)−f(x2))′(x−1)′=limx→12xf(1)−2xf′(x2)1=4−10=−6
解答:Sn=∫10(xn−xn+1)dx=[1n+1xn+1−1n+2xn+2]|10=1n+1−1n+2⇒∞∑n=1Sn=(12−13)+(13−14)+⋯=12
解答:f(x)=x+2x+649(xx2−x+2)⇒f′(x)=1−2x2+649(1x2−x+2−x(2x−1)(x2−x+2)2)=x2(x2−x+2)2−2(x2−x+2)2x2(x2−x+2)2+649(x2−x+2−2x2+x(x2−x+2)2)=(x2−2)(x2−x+2)2x2(x2−x+2)2−649⋅x2−2(x2−x+2)2=(x2−2)(x2−x+2)2x2(x2−x+2)2−649⋅x2(x2−2)x2(x2−x+2)2=x2−2x2(x2−x+2)2((x2−x+2)2−(8x3)2)=x2−2x2(x2−x+2)2(x2−113x+2)(x2+53x+2)f(x)最小值出現在x2−113x+2=0⇒兩根之和=113
解答:limx→1x2f(1)−f(x2)x−1=limx→1(x2f(1)−f(x2))′(x−1)′=limx→12xf(1)−2xf′(x2)1=4−10=−6
解答:Sn=∫10(xn−xn+1)dx=[1n+1xn+1−1n+2xn+2]|10=1n+1−1n+2⇒∞∑n=1Sn=(12−13)+(13−14)+⋯=12

解答:
|z(−1+√3i)|=|z|⋅|−1+√3i|=|z|⋅2=4⇒|z|=2⇒Γ:x2+y2=4取{A(0,4)C(0,1),則Γ為滿足¯PA=2¯PC的阿波羅尼斯圓,其中P(z)∈Γ欲求12|z−4i|+|z−3|=12¯PA+¯PB=¯PC+¯PB(其中B=(3,0))因此當P、B、C在一直線時,其值最小,即¯PC+¯PB=¯BC=√10
解答:
解答:
A,H,D在一直線上⇒→AH=13→AB+14→AC=13→AB+23→AD⇒¯AD:¯AC=3:8⇒取{A(0,0)D(3k,0)C(8k,0)H(3k,t)B(3k,s)⇒(3k,t)=13(3k,s)+14(8k,0)⇒s=3t⇒B(3k,3t)⇒→AH⋅→BC=0⇒(3k,t)⋅(5k,−3t)=15k2=3t2⇒t=√5k⇒cos∠BAC=→AB⋅→AC|→AB||→AC|=24k2√9k2+9t2⋅8k=24k2√54k2⋅8k=1√6=√66
ddx(∫x1f(t)dt)=ddx(13x3+ax+b)⇒f(x)=x2+a⇒f(x),g(x)皆為對稱y軸的偶函數⇒¯AB為一水平線且¯AB=2⇒{A(−1,g(−1))⇒A(−1,5/2)B(1,g(1))⇒B(1,5/2){∫11f(t)dt=0=13+a+b⇒b=−13−af(1)=g(1)=52=1+a⇒a=32⇒(a,b)=(32,−116)⇒a−b=32+116=206=103
解答:
解答:{X∼N(60,52)Y∼N(70,62)⇒X+Y∼N(60+70,92)=N(130,92)⇒Var(X+Y)=92=81=Var(X)+Var(Y)+2Cov(X,Y)=25+36+2Cov(X,Y)⇒Cov(X,Y)=10⇒迴歸直線斜率=Cov(X,Y)Var(X)=1025=25迴歸直線經過(ˉX,ˉY)=(60,70)⇒y−50=25(x−60)
解答:0.216=0.63⇒0.63≤x≤1⇒0≤log0.6x≤3取t=log0.6x⇒x=0.6t⇒f(x)=g(t)=(0.6t)(t−2)3=0.6t(t−2)3h(t)=t(t−2)3⇒h′(t)=(t−2)3+3t(t−2)2=(t−2)2(4t−2)=0⇒t=2,12⇒{g(2)=1g(1/2)=0.6−27/16>1⇒最大值=0.6−27/16
解答:|z+3|+|z−3|=10為一橢圓,其中{a=5c=3左焦點F1(−3,0)右焦點F2(3,0)|z1+3|,|z2+3|,|z3+3|代表三點至左焦點距離,也就是Re(z1),Re(z2),Re(z3)成等差因此Re(z1+z3)=2Re(z2)=2×54=52
解答:
{y=−√4−x2圖形為x2+y2=4的下半圓y=−x2+4圖形為一凹向下拋物線,其頂點為(0,4)⇒所圍區域如上圖直線3x+y=k的斜率為−3{y=−√4−x2y=−x2+4⇒{y′=x√4−x2=−3⇒x=−3√2/√5⇒y=−√25y′=−2x=−3⇒x=3/2⇒y=7/4⇒切點為{(−3√25,−√25)(32,74)⇒3x+y={−10√25=−2√10254⇒−2√10≤k≤254
解答:x=32x+1⇒2x2+x−3=0⇒(2x+3)(x−1)=0⇒x=1,−32取bn=an−1an+3/2=32an−1+1−132an−1+1+32=2−2an−13an−1+92=−23⋅an−1−1an−1+32=−23bn−1a1=2⇒b1=2−12+3/2=27⇒bn=27⋅(−23)n−1bn=an−1an+3/2⇒an=52(1−bn)−32=1+107(−2/3)n−12−47(−2/3)n−1⇒limn→∞(an−1)(−32)n=limn→∞107(−3/2)2−47(−2/3)n−1=limn→∞−30142=1514
解答:((1+x)+x2(1+x))6=(1+x2)6(1+x)6⇒{(1+x2)6=1+6x2+15x4+20x6+15x8+6x10+x12(1+x)6=1+6x+15x2+20x3+15x4+6x5+x6⇒x5係數=1⋅6+6⋅20+15⋅6=216
解答:x=32x+1⇒2x2+x−3=0⇒(2x+3)(x−1)=0⇒x=1,−32取bn=an−1an+3/2=32an−1+1−132an−1+1+32=2−2an−13an−1+92=−23⋅an−1−1an−1+32=−23bn−1a1=2⇒b1=2−12+3/2=27⇒bn=27⋅(−23)n−1bn=an−1an+3/2⇒an=52(1−bn)−32=1+107(−2/3)n−12−47(−2/3)n−1⇒limn→∞(an−1)(−32)n=limn→∞107(−3/2)2−47(−2/3)n−1=limn→∞−30142=1514
解答:((1+x)+x2(1+x))6=(1+x2)6(1+x)6⇒{(1+x2)6=1+6x2+15x4+20x6+15x8+6x10+x12(1+x)6=1+6x+15x2+20x3+15x4+6x5+x6⇒x5係數=1⋅6+6⋅20+15⋅6=216
解答:0.216=0.63⇒0.63≤x≤1⇒0≤log0.6x≤3取t=log0.6x⇒x=0.6t⇒f(x)=g(t)=(0.6t)(t−2)3=0.6t(t−2)3h(t)=t(t−2)3⇒h′(t)=(t−2)3+3t(t−2)2=(t−2)2(4t−2)=0⇒t=2,12⇒{g(2)=1g(1/2)=0.6−27/16>1⇒最大值=0.6−27/16
解答:|z+3|+|z−3|=10為一橢圓,其中{a=5c=3左焦點F1(−3,0)右焦點F2(3,0)|z1+3|,|z2+3|,|z3+3|代表三點至左焦點距離,也就是Re(z1),Re(z2),Re(z3)成等差因此Re(z1+z3)=2Re(z2)=2×54=52
跟第七題一樣,假設{x=x′y=3y′/5⇒x′225+(3y′/5−3)29=1⇒x′2+(y′−5)2=25為一圓當P′(0,15)有最小外切三角形(正△),其面積為75√3|∂(x,y)∂(x′,y′)|=‖1003/5‖=35⇒{m=35×15=9M=35×75√3=45√3⇒(m,M)=(9,45√3)
解答:假設ω=cos2πn+isin2πn,則xn−1+xn−2+⋯+1=0的n−1個根為ωk,k=1,2…,n−1且ωn=1令f(x)=xn−1+xn−2+⋯+1=(x−ω1)(x−ω2)⋯(x−ωn−1)⇒f(1)=n=(1−ω1)(1−ω2)⋯(1−ωn−1)⇒1−ωk=1−(cos2kπn+isin2kπn)=2sin2kπn−2sinkπncoskπni=2sinkπn(sinkπn−coskπni)⇒|1−ωk|=2sinkπn⇒n=|1−ω1||1−ω2|⋯|1−ωn−1|=2sinπn⋅2sin2πn⋯sin(n−1)πn⇒sinπn⋅sin2πn⋯sin(n−1)πn=n2n−1.QED.
解答:
△ABC為邊長30的正三角形,因此假設{A(0,0,0)B(30,0,0)C(15,15√3,0)⇒{E=¯AB的中點=(15,0,0)G為△ABC的重心=(15,5√3,0)⇒{¯DE=√¯AD2−¯AE2=15√15¯EG=13¯CE=5√3⇒¯DG=√¯DE2−¯EG2=10√33⇒D(15,5√3,10√33)¯GG′=¯EGtanθ=5√3⋅√115=√33⇒G′=(15,5√3,√33)⇒平面E=△G′AB:−√11y+5z=0⇒C′=↔CD∩E=(15,252√3,52√33)⇒¯CC′=√(52√3)2+(52√33)2=15
二、計算證明題(共10 分)
解答:(1)A=[110710910310]=[−17911][−35001][−916716916916]⇒An=[−17911][(−35)n001n][−916716916916]=[916(−35)n+716−716(−35)n+716−916(−35)n+916716(−35)n+916]αnA+βnI=[110αn710αn910αn310αn]+[βn00βn]=[110αn+βn710αn910αn310αn+βn]⇒{αn=−58(−35)n+58βn=58(−35)n+38⇒αn+βn=1.QED(2)αn=−58(−35)n+58⇒−0.6αn+1=38(−35)n−38+1=38⋅(−53)(−35)n+1+58=−58(−35)n+1+58=αn+1.QED.limn→∞αn=limn→∞(−58(−35)n+58)=58解答:假設ω=cos2πn+isin2πn,則xn−1+xn−2+⋯+1=0的n−1個根為ωk,k=1,2…,n−1且ωn=1令f(x)=xn−1+xn−2+⋯+1=(x−ω1)(x−ω2)⋯(x−ωn−1)⇒f(1)=n=(1−ω1)(1−ω2)⋯(1−ωn−1)⇒1−ωk=1−(cos2kπn+isin2kπn)=2sin2kπn−2sinkπncoskπni=2sinkπn(sinkπn−coskπni)⇒|1−ωk|=2sinkπn⇒n=|1−ω1||1−ω2|⋯|1−ωn−1|=2sinπn⋅2sin2πn⋯sin(n−1)πn⇒sinπn⋅sin2πn⋯sin(n−1)πn=n2n−1.QED.
================ END =================
解題僅供參考,其他歷年試題及詳解
沒有留言:
張貼留言