Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

網頁

2024年6月24日 星期一

113年警專43期數學科(甲組)詳解

臺灣警察專科學校113學年度專科警員班第43期
正期學生組新生入學考試-甲組數學科

解答:xy=2(D)
解答:log2×1034.5=34.5+log2=34.5+0.301=34.80135(B)
解答:10log20=1012log20=10log20=20=25(B)
解答:loga4=loga1r3=loga1+3logr=10+3log10=10+32(D)
解答:A(5,0)y=xA(0,5)¯PA+¯PB=¯AB=52+122=13(C)
解答:{10x=30010y=30{x=log300y=log30x2y=log3002log30=log300302=log13=log3(A)
解答:P(2,3)x=7=r=5P3x4y=k=|612k|5=56k=25k=19(B)
解答:x2+y28x+4y=0(x4)2+(y+2)2=20{O(4,2)r=25{¯OQ=r=25¯OP=62+22=210¯PQ2=¯OP2¯OQ2=4020=20¯PQ=25(B)
解答:{|a|=4|b|=6ab=0{(x1,y1)=(4,0)(x2,y2)=(0,6)
解答:\cos \theta ={10^2+12^2-10^2 \over 2\cdot 10\cdot 12} ={144\over 240} ={3\over 5},故選\bbox[red, 2pt]{(A)}
解答:此題相當於10顆相同的藍球和6顆相同的排球和4顆相同的足球排成一列,\\ 有{20!\over 10!6!4!}排法,故選\bbox[red, 2pt]{(D)}
解答:\triangle CBB' \sim \triangle CAA' \Rightarrow {\triangle AA'C\over \triangle BB'C} ={d(A,L)^2\over d(B,L)^2} ={64\over 4}=16,故選\bbox[red, 2pt]{(D)}
解答:A\begin{bmatrix}1 & 0& -3 \\0 & 1& 4 \end{bmatrix} =\begin{bmatrix}2 & 1& x \\3 & 2& y \end{bmatrix} \Rightarrow A=\begin{bmatrix}2 & 1 \\3 & 2 \end{bmatrix} \Rightarrow \begin{bmatrix}x \\y \end{bmatrix} =A\begin{bmatrix}-3 \\4 \end{bmatrix} =\begin{bmatrix}-2 \\-1 \end{bmatrix},故選\bbox[red, 2pt]{(A)}
解答:\cases{{x-2\over -3} ={y+3\over 2} \\ {y+3\over 2}={z-1\over -18}} \Rightarrow \cases{x={-3y-5\over 2} \\ z=-9y-26} 代入x-3y+2z={-3y-5\over 2}-3y-18y-52=4\\ \Rightarrow y=-{13\over 5} \Rightarrow \cases{x=7/5\\ y=-13/5} \Rightarrow (x,y,z)=({7\over 5},-{13\over 5},-{13\over 5}),故選\bbox[red, 2pt]{(B)}
解答:a_n=a_{n-1}-2=a_{n-2}-4 =\cdots = a_2-2(n-2)=a_1-2(n-1)=9-2(n-1)\\ \Rightarrow a_{27}-a_{37}=9-2\cdot 26-(9-2\cdot 36)=20,故選\bbox[red, 2pt]{(C)}
解答:\sin(90^\circ-\theta)+ \cos(90^\circ+\theta)+ \cos(180^\circ-\theta)= \cos\theta-\sin \theta-\cos \theta=-\sin \theta=-{3 \over 5},故選\bbox[red, 2pt]{(A)}
解答:假設a=k+b,k為整數且k\ge 0 \Rightarrow a^2+10b^2=(k+b)^2+10b^2=k^2+2kb+11b^2=20 \\ \Rightarrow \cases{k=0 \Rightarrow 11b^2=20\Rightarrow b=\sqrt{20\over 11}\gt 1不合\\k=1 \Rightarrow 11b^2+2b-19=0 \Rightarrow b={-1+\sqrt{210} \over 11} \gt 1不合\\ k=2 \Rightarrow 11b^2+4b-16=0 \Rightarrow b={-2+ 6\sqrt 5\over 11} \gt 1不合\\ k=3 \Rightarrow  11b^2+6b-11=0 \Rightarrow b={-3+\sqrt{130}\over 11} \lt 1 \\ k=4 \Rightarrow 11b^2+8b-4=0 \Rightarrow b={-4+ 2\sqrt{15} \over 11} \lt 1 \\k=5 \Rightarrow 11b^2+10b+5=0 \Rightarrow b無實數解} \\ \Rightarrow k=a-b =3或4有兩種可能,故選\bbox[red, 2pt]{(B)}
解答:f(x)=(3x-6)P(x)+12=2xQ(x)+4=x(x-2)+ax+b\\ \Rightarrow \cases{f(2)=12=2a+b\\ f(0)=4=b} \Rightarrow a=b=4 \Rightarrow 餘式:4x+4,故選\bbox[red, 2pt]{(D)}
解答:y=3x^3-x-1 \Rightarrow 平移後 y=f(x)=3(x-h)^3-(x-h)-1 \\ 對稱y軸 \Rightarrow f(x)=f(-x) \Rightarrow 3(x-h)^3-(x-h)-1=3(-x-h)^3-(-x-h)-1 \\ \Rightarrow -6hx-x=6xh+x \Rightarrow 2x(6h+1)=0 \Rightarrow h=-{1\over 6},故選\bbox[red, 2pt]{(B)}
解答:|x-a|=b \ge 0 \Rightarrow \cases{x=a+b\\ x=a-b} \Rightarrow a-b=1.2,故選\bbox[red, 2pt]{(C)}
解答:\cases{\overrightarrow{OA}=(2,5,1)\\ \overrightarrow{OB}= (3,11,3)} \Rightarrow \vec n=\overrightarrow{OA} \times \overrightarrow{OB} =(4,-3,7) \Rightarrow 平面E:4x-3y+7z=0 \\ C在E上 \Rightarrow 8+6+7k=0 \Rightarrow k=-2,故選\bbox[red, 2pt]{(A)}
解答:x^2+y^2+7x-5y+4=0 \Rightarrow 圓心O(-7/2,5/2) \Rightarrow O=(A+B)\div 2 \\ \Rightarrow B=2O-A=(-7,5)-(0,4)=(-7,1),故選\bbox[red, 2pt]{(C)}
解答:\cases{A(\sqrt 3)\\ B({8\over \sqrt 3+\sqrt 5})=(4(\sqrt 5-\sqrt 3))\\ C(\sqrt 5)} \Rightarrow \overline{AB}: \overline{BC}=4\sqrt 5-5\sqrt 3:-3\sqrt 5+4\sqrt 3 \\=\sqrt{15}:3=\sqrt 5:\sqrt 3,故選\bbox[red, 2pt]{(B)}
解答:

所圍區域頂點坐標\cases{A(6,0)\\ B(3,1)\\ C(4,0)} \Rightarrow 所圍面積=\triangle ABC={1\over 2}\times 2\times 1=1,故選\bbox[red, 2pt]{(A)}
解答:f(x)=(x-1)^3+(x-1)^2+2(x-1)+1 \Rightarrow f(0.99)=-0.01^3+0.01^2-0.02+1 \approx 0.98\\,故選\bbox[red, 2pt]{(B)}
解答:(x^2-3)(x^2-33)\le 0 \Rightarrow 3\le x^2\le 33 \Rightarrow x=\pm 2,\pm 3 ,\pm 4,\pm 5,共8個整數解,故選\bbox[red, 2pt]{(B)}
解答:f(x)=ax+b \Rightarrow \cases{{f(1113)-f(113)\over 1000}=a={1\over 2}\\ f(-1)=-a+b=1} \Rightarrow \cases{a=1/2\\ b=3/2} \\ \Rightarrow f(1)=a+b=2,故選\bbox[red, 2pt]{(D)}
解答:a+ar+ar^2+\cdots+ar^7={a(1-r^8)\over 1-r} ={-3(1-256)\over 3 } =255,故選\bbox[red, 2pt]{(A)}
解答:平均值E(X)={4(60+80)\over 8} =70 \\ E(X^2)={1\over 8}\cdot 4(60^2+ 80^2)=5000 \Rightarrow Var(X)=5000-70^2=100 \Rightarrow \sigma=\sqrt{100}=10,故選\bbox[red, 2pt]{(C)}
解答:\cases{A(2,-3,5)\\ B(-3,p,2)\\ C(5,2,q)} \Rightarrow \cases{\overrightarrow{AB}= (-5,p+3,-3)\\ \overrightarrow{AC}=(3,5,q-5)} \Rightarrow {-5\over 3}={p+3\over 5} ={-3\over q-5} \Rightarrow \cases{p=-34/3\\ q=34/5} \\ \Rightarrow (p,q)=(-{34\over 3},{34\over 5}),故選\bbox[red, 2pt]{(B)}
解答:\cases{X'=2X-0.1\\ Y'=-Y+0.2} \Rightarrow \cases{\sigma(X')=2\sigma(X)\\ \sigma(Y')=\sigma(Y)\\ Cov(X',Y')=-2Cov(X,Y)} \\ \Rightarrow 0.3={Cov(X,Y)\over \sigma(X) \sigma(Y)} \Rightarrow {Cov(X',Y')\over \sigma(X') \sigma(Y')}=-{Cov(X,Y)\over \sigma(X) \sigma(Y)} =-0.3,故選\bbox[red, 2pt]{(C)}
解答:\cases{3男3女: C^7_3C^4_3 =140\\ 2男4女:C^7_2C^4_4=21} \Rightarrow 140+21=161,故選\bbox[red, 2pt]{(A)}
解答:9顆球期望值6 \Rightarrow 編號總和=9\times 6=54\\ \Rightarrow 4\times 2+6\times 3+4k=54 \Rightarrow k=7,故選\bbox[red, 2pt]{(C)}
解答:假設\angle AOB=\theta \Rightarrow B為A逆時針旋轉\theta \Rightarrow B=\begin{bmatrix}\cos \theta & -\sin \theta \\\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix}3 \\4 \end{bmatrix} =\begin{bmatrix}3/5 & -4/5 \\4/5 & 3/5 \end{bmatrix} \begin{bmatrix}3 \\4 \end{bmatrix} \\=\begin{bmatrix}-7/5 \\24/5 \end{bmatrix} \Rightarrow B=(-{7\over 5},{24\over 5}),故選\bbox[red, 2pt]{(A)}
解答:\angle ADB+\angle BDC=180^\circ \Rightarrow \sin \angle ADB=\sin \angle BDC \Rightarrow \cases{{7\over \sin \angle ADB}=2r_1\\ {7\over \sin \angle BDC}=2r_2} \\ \Rightarrow r_1=r_2\Rightarrow r_1:r_2=1:1,故選\bbox[red, 2pt]{(A)}
解答:\angle B=(2\pi-2\cdot {\pi\over 4})\div 2={3\over 4}\pi \Rightarrow \cos B=-{1\over \sqrt 2}={8+9-\overline{AC}^2 \over 12\sqrt 2} \Rightarrow \overline{AC}^2 =29\\ \Rightarrow \overline{AC}=\sqrt {29},故選\bbox[red, 2pt]{(D)}
解答:\sin(x+{\pi\over 3})+ \cos(x+{\pi\over 6})={1\over 2}\sin x+{\sqrt 3\over 2}\cos x+ {\sqrt 3\over 2}\cos x-{1\over 2}\sin x =\sqrt 3\cos x\le \sqrt 3\\,故選\bbox[red, 2pt]{(C)}
解答:

假設正六邊形邊長為1,且E(0,0),如上圖,則\cases{A(-{1\over 2},{3\over 2}\sqrt 3)\\ B(0,\sqrt 3)\\ C(0,2\sqrt 3)\\ D(1,2\sqrt 3)} \Rightarrow \cases{\overrightarrow{DE}=(-1,-2\sqrt 3)\\ \overrightarrow{AB}=({1\over 2},-{1\over 2}\sqrt 3)\\ \overrightarrow{CD}=(1,0)} \\ \Rightarrow (-1,-2\sqrt 3)=x({1\over 2},-{1\over 2}\sqrt 3)+ y(1,0) \Rightarrow (x,y)=(4,-3),故選\bbox[red, 2pt]{(D)}
解答:假設O=\overline{BD}與\overline{CE}的交點,並令\cases{O(0,0,0)\\ B(-3/2,-3/2,0)\\ D(3/2,3/2,0)} \Rightarrow A(0,0,\sqrt{46}/2) \\\Rightarrow \cases{\overrightarrow {AB}=(-3/2,-3/2,-\sqrt{46}/2)\\ \overrightarrow{AD}=(3/2,3/2,-\sqrt{46}/2)} \Rightarrow \overrightarrow{AB}\cdot \overrightarrow{AD}=-{9\over 2}+{46\over 4} =7,故選\bbox[red, 2pt]{(C)}
解答:\begin{vmatrix}2a+3b & b-a \\2c+3d & d-c \end{vmatrix} =\begin{vmatrix}5a & b-a \\5c & d-c \end{vmatrix} =\begin{vmatrix}5a & b \\5c & d \end{vmatrix} = 5 \begin{vmatrix}a & b \\c & d \end{vmatrix} =5\cdot 10=50,故選\bbox[red, 2pt]{(C)}

=================== END ====================

解題僅供參考,警專歷年試題及詳解



2 則留言:

  1. 第17題,當k=3 ,4的時候才是符合的,k=1,2是不行的,因b>1.

    回覆刪除