Processing math: 76%

網頁

2024年6月5日 星期三

113年中區縣市國中教甄-數學詳解

113學年度中區縣市政府教師甄選策略聯盟

【科目名稱:國中數學】
選擇題【共50題,每題2分,共100分】請以2B鉛筆於答案卡上作答,單選題;答錯不倒扣。

解答:x2y=3xy=3xx+xy=x+3x=4x24x+3=0(x3)(x1)=0{x=1y=3x+y=4x=3y=1/3x+y=10/3x+y=4(C)
解答:x2(1×2)/22(2×3)/22(3×4)/22(4×5)/22(5×6)/22(6×7)/22(7×8)/22(8×9)/2mod7211211212,1,1,99=(2+1+1)×33=132=6mod7(D)
解答:


=10(xx2)dx+21(x2x)dx=[12x213x3]|10+[13x312x2]|21=16+56=1(C)
解答:(A)×:f(x)=(1)nlimxa|f(x)|=1,limxaf(x)(B)×:{f(x)=1/(xa)g(x)=1/(xa)limxa(f(x)+g(x))=0limxaf(x)(C)×:{f(x)=x2g(x)=1/x2{limx2f(x)g(x)=24=16=αlimx21f(x)=14=βlimx2g(x)=14164=βα(D)

解答:


¯AB¯CDOr¯CE=aDOFDEC(AAA)¯OD¯FD=¯DE¯CDr6=82rr=26CDE:¯CD2=¯DE2+¯CE24r2=82+a2a=42(D)
解答:{α+β=pαβ=276p(βα)2=(β+α)24αβ=p2+1104pβα=p2+1104p=p2+24323p=23272 (if p=23)=237=161(D)
解答:{a>0b>0{2a+b=10a=12b<0;{a<0b>0{a<0b<0{a>0b<0{2a+b=10a2b=12{a=32/5b=14/5a+b=185(A)
解答:cosA=cos120=12=42+22¯BC2224¯BC=27¯ADA¯AB¯AC=¯BD¯DC{¯BC=47/3¯CD=27/3cosCAD=cos60=12=42+¯AD2112/98¯AD¯AD=43,83()(B)
解答:A=[024224448082010263291]R1/2R1,R2/4R2[012111112082010263291]R38R2R3,R46R2R4[01211111200686203431]R3+6R1R3,R4+3R1R4[01211111200040800204]R1R2[11120012110040800204]R1R2R1,R3/4R3[10111012110010200204]R1+R3R1,R22R3R2,R42R2R4[10011010130010200000]rank(A)=3(C)
解答:sin3θsinθ=4sin3θ+3sinθsinθ=4sin2θ+3=73sin2θ=16sinθ=16cosθ=56cos3θcosθ=4cos3θ3cosθcosθ=4cos2θ3=4563=13(A)


解答:
¯AEACE=90¯CE=122(45)2=8r¯AD=122r¯CD2=¯AC2¯AD2=¯CE2¯DE2(45)2(122r)2=82(2r)2r=83(C)


解答:


APB=APC=CPB=120P(Fermat point)ACD,D,P,B,¯PA+¯PB+¯PC=¯DBcosAPC=cos120=12=82+62¯AC2268¯AC=237{C(0,0)E=¯PE¯AC,CPA=120APE=EPC=60¯EPAPC¯AE¯EC=¯PA¯PC=43¯EC=23733+4=6737E(0,6737)¯AC=237D(111,37)L=DE:y=378111x+6737B(6111,0)¯DB=74¯PB=7468=60(D)


解答:b=cR=ab22b=a2a=2R()(A)
解答:f(x)=xg(x),g(x)=(x1)(x2)(x2024)(x+1)(x+2)(x+2024)f(x)=g(x)+xg(x)f(0)=g(0)=2024!2024!=1(C)
解答:f(x)=x4+2x33x2+2x1f(x)=4x3+6x26x+2limh0f(1+3h)f(12h)h=limh0(f(1+3h)f(12h))(h)=limh03f(1+3h)+2f(12h)1=3f(1)+2f(1)=3(4+66+2)+2(4+66+2)=18+12=30(D)
解答:(A)
解答:π/20cosxdx=1=1π/2=2π(A)

解答:{tanα+tanβ=ptanαtanβ=q{1cotα+1cotβ=p1cotαcotβ=q{cotα+cotβ=p/qcotαcotβ=1/qrs=(cotα+cotβ)(cotαcotβ)=pq1q=pq2(C)
解答:(logax)(logxba)(logxb)(logabx)=(logax)(logxblogxa)(logxb)(1logxab)=logab1logabb=logab11logba+1=(logba+1)(logab1)=1logba+logab1=110+10=9910(B)
解答:1+23+5(1+3)(3+5)+3+27+5(5+7)(7+3)=(1+3)+(3+5)(1+3)(3+5)+(3+7)+(7+5)(5+7)(7+3)=13+5+11+3+15+7+17+3=12(53+31+75+37)=1(B)
解答:n=1n+1nn2+n=n=1(1n1n+1)=112+1213+1314+=1(A)
解答:a=2+ba2=2a+ab2ab=2a222a2a222a+22c2+1=02(a22)2+22c2=0{a=2/2c=0b=a2=22{a=2/2b=2/2c=0a+b+c=0(D)
解答:cosx12(eix+eix)0excosxdx=120(e(i1)x+e(i+1)x)dx=12[1i1e(i1)x1i+1e(i+1)x]|0=12(1i+11i1)=121=12(C)
解答:n=f(n)=180(n2){f(12)=1800<2024,f(13)=1980<2024,f(14)=2160=21602024=136f(15)=2340=23402024=316,(C)
解答:|14132100100220021|R22R1R2|1413022700220021|=|227022021|=2|2221|=12(D)
解答:(A):{AB=(1,2,1)AC=(2,2,2)ABAC=0BAC=π2(B):AB=(2,1,1)(1,1,0)=(1,2,1)(C):AB×AC=|ijk121222|=6i+0j+6k(D)×:12AB×AC=3222(D)
解答:710=1 mod 117223=(710)2273=73 mod 11=2 mod 11(A)
解答:0.ˉ3=39=13(B)
解答:52.2361+540.81(C)
解答:3f(1)+5f(1)=2+1f(1)=38=0.375(D)
解答:10x21+x2dx=10(111+x2)dx=[xtan1x]|10=1π4(A)
解答:{1,1,2,31,2,2,31,2,3,34!2!=12,12×3=36(D)


解答:{u=(2,4,3,1)v=(1,1,2,0)(A)×:(2,1,0,0)v=30(B)×:(1,1,1,0)u=30(C):{(2,0,1,7)u=0,(2,0,1,7)v=0(1,1,0,2)u=0,(1,1,0,2)v=0(D)×:(0,1,2,2)v=50(C)

解答:2828!,,,28!/2(D)
解答:{7=7 mod 1072=9 mod 1073=3 mod 1074=1 mod 1075=7 mod 10=4,{7=3 mod 472=1 mod 473=3 mod 474=1 mod 42777=73 mod 4=3 mod 10(B)
解答:abc=1a=b=c=111+1+1+11+1+1+11+1+1=1(C)a1+a+ab+b1+b+bc+c1+c+ac=a1+a+ab+aba+ab+abc+abcab+abc+a2bc=a1+a+ab+aba+ab+1+1ab+1+a=a+ab+11+a+ab=1
解答:A=[236034023]det(AλI)=λ3+2λ2+λ2=(λ1)(λ2)(λ+1)=0λ=1,2,1(B)
解答:(A)x=241x2=78,(B)x=231x2=79,(C)x=221x2=222212+2222=2,(D)x=21x2<0,(C)
解答:\triangle ABC :\cases{\angle C=90^\circ\\ 2\overline{BC}=\overline{AB}} \Rightarrow \cases{\angle A=30^\circ \\\angle ABC=60^\circ} \\ \Rightarrow \tan \angle DEC=\tan 60^\circ ={\overline{DC} \over \overline{EC}} \Rightarrow \sqrt 3={3\over \overline{EC}}  \Rightarrow \overline{EC}=\sqrt 3,故選\bbox[red, 2pt]{(A)}
解答:\left( {\sqrt 3\over 2}-{1\over 2}i\right)^{2022} =\left( \cos{11\over 6}\pi+ i\sin {11\over 6}\pi \right)^{2022} =(e^{11\pi i/6})^{2022} =e^{11\cdot 337 \pi i} \\=e^{3707\pi i} =e^{(2 \cdot 1853+1)\pi i} =e^{\pi i} =-i,故選\bbox[red, 2pt]{(D)}
解答:\cases{A \begin{bmatrix}1  \\2\\3 \end{bmatrix} =\begin{bmatrix}1  \\1\\ 0 \end{bmatrix} \\A \begin{bmatrix}2  \\2\\4 \end{bmatrix} =\begin{bmatrix}0  \\1\\ 1 \end{bmatrix} } \Rightarrow \cases{A^{-1}\begin{bmatrix}1  \\1\\ 0 \end{bmatrix} = \begin{bmatrix}1  \\2\\3 \end{bmatrix} \\A^{-1}\begin{bmatrix}0  \\1\\ 1 \end{bmatrix} = \begin{bmatrix}2  \\2\\4 \end{bmatrix}}  \Rightarrow 3A^{-1}\begin{bmatrix}1  \\1\\ 0 \end{bmatrix}-2 A^{-1}\begin{bmatrix}0  \\1\\ 1 \end{bmatrix} =3\begin{bmatrix}1  \\2\\3 \end{bmatrix}-2 \begin{bmatrix}2  \\2\\4 \end{bmatrix} \\ \Rightarrow A^{-1} \left( \begin{bmatrix}3  \\3\\ 0 \end{bmatrix}+ \begin{bmatrix}0  \\-2\\ -2 \end{bmatrix}\right) = \begin{bmatrix}3  \\6\\9 \end{bmatrix}+ \begin{bmatrix}-4  \\-4\\-8 \end{bmatrix} \Rightarrow A^{-1}\begin{bmatrix}3  \\1\\ -2 \end{bmatrix} =\begin{bmatrix}-1  \\2\\ 1 \end{bmatrix} \\ \Rightarrow A\begin{bmatrix}-1  \\2\\ 1 \end{bmatrix}= \begin{bmatrix}3  \\1\\ -2 \end{bmatrix} \Rightarrow \mathbf X=\begin{bmatrix}-1  \\2\\ 1 \end{bmatrix},故選\bbox[red, 2pt]{()}

解答:投n次都沒中的機率=(1-0.5)^n={1\over 2^n} \Rightarrow 至少中一次的機率=1-{1\over 2^n}\gt 0.9 \Rightarrow {1\over 2^n}\lt 0.1 \\ \Rightarrow n\ge 4,故選\bbox[red, 2pt]{(D)}
解答:\cases{A(4,0,0) \\B(5,4,2) \\C(0,4,0) \\D(1,3,1)} \Rightarrow L=\overleftrightarrow{CD} :{x\over 1} ={y-4\over -1}={z\over 1} \Rightarrow P(t,-t+4,t),t\in \mathbb R  \Rightarrow \cases{\overrightarrow{PA} =(t-4,-t+4,t) \\ \overrightarrow{PB} =(t-5,-t,t-2)}\\ \Rightarrow \overrightarrow{PA} \cdot \overrightarrow{PB} =(t-4)(t-5)-t(-t+4)+t(t-2) =3(t-{5\over 2})^2+{5\over 4} \\ \Rightarrow 最小值={5\over 4}=1.25,故選\bbox[red, 2pt]{(B)}

解答:L_1\bot L_2 \Rightarrow x=4 \Rightarrow \cases{Q(2,0)\\ R(1,0)} \\ 由於\angle RPQ=90^\circ \Rightarrow \overline{QR}為外接圓直徑=2R \Rightarrow R={1\over 2}\overline{QR} ={1\over 2},故選\bbox[red, 2pt]{(D)}
解答:{3+8-1\over \sqrt{3^2+4^2}} =2,故選\bbox[red, 2pt]{(D)}
解答:\sqrt{{1\over 3^2}+{1\over 4^2}+1} =\sqrt{1+({5\over 12}^2)}\\ 假設\tan \theta={5\over 12} \Rightarrow \sqrt{1+({5\over 12}^2)} =\sqrt{1+\tan^2 \theta} =\sec \theta={13\over 12} =1.08,故選\bbox[red, 2pt]{(B)}
解答:\cases{兩根之和6-m\ge 2\\ 兩根之積m-1\ge 1} \Rightarrow 2\le m\le 4 \Rightarrow \cases{m=2 \Rightarrow x^2-4x+1=0兩根非正整數\\ m=3 \Rightarrow x^2-3x+2=0\Rightarrow x=2,1},故選\bbox[red, 2pt]{(D)}
解答:(a^x+a^{-x})^2=a^{2x}+a^{-2x}+2=4 \Rightarrow a^{2x}+a^{-2x}=2\\ \Rightarrow a^{3x}+ a^{-3x} =(a^x+a^{-x})(a^{2x}-1+a^{-2x}) =2\cdot (2-1)=2,故選\bbox[red, 2pt]{(B)}
解答:{1\over 2}\log{125\over 16} +\log {3\sqrt 8\over 125} -\log {3\over 5} ={1\over 2}(\log 125-\log 16) +\log 3\sqrt 8-\log 125-\log 3+\log 5 \\={3\over 2}\log 5-2\log 2+\log 3+{3\over 2} \log 2-3\log 5-\log 3+\log 5 =-{1\over 2}\log 5-{1\over 2}\log 2 \\=-{1\over 2}(1-\log 2)-{1\over 2}\log 2=-{1\over 2},故選\bbox[red, 2pt]{(A)}
解答:由於限制在區間內,因此至少有兩個極值,故選\bbox[red, 2pt]{(C)}


 

===========  END ================
解題僅供參考,教甄其他歷年試題及詳解










5 則留言:

  1. 謝謝,你的方法比較 【完備】!

    回覆刪除
  2. 老師您好,想請教第39題如何得知角C為90度?謝謝您

    回覆刪除
    回覆
    1. 嚴格地講,題目並沒有標示角C是90度, 只不過這樣畫圖應該是90度吧!!?

      刪除