國立中正大學113學年度碩士班招生考試
科目名稱:微積分
系所組別:經濟學系國際經濟學
解答:1. (1)L=(1+1x)x=(x+1x)x⇒lnL=ln(x+1)−lnx1/x⇒limx→∞lnL=limx→∞(ln(x+1)−lnx)′(1/x)′=limx→∞1x+1−1x−1x2=limx→∞(−x2x+1+x)=limx→∞xx+1=1⇒limx→∞L=e1=e(2) limx→02sinxx=limx→0(2sinx)′(x)′=limx→02cosx1=2(3)L=(3x+4x)1/x⇒lnL=ln(3x+4x)x⇒limx→∞lnL=limx→∞(ln(3x+4x))′(x)′=limx→∞ln3⋅3x+ln4⋅4x3x+4x=limx→∞ln3⋅(3/4)x+ln4(3/4)x+1=ln4⇒limx→∞L=eln4=42. (4) f(x)=11+1x=xx+1⇒f′(x)=1x+1−x(x+1)2=1(x+1)2(5) g(x)=ex1+ex=1−11+ex⇒g′(x)=ex(1+ex)2
3. (6) u=lnx⇒du=dxx⇒∫1xlnxdx=∫1udu=lnu+c1=ln(lnu)+c1(7) {u=exdv=cosxdx⇒{du=exdxv=sinx⇒I=∫excosxdx=exsinx−∫exsindx{u=exdv=sinxdx⇒{du=exdxv=−cosx⇒∫exsinxdx=−excosx+∫excosxdx⇒I=exsinx+excosx−I⇒I=12ex(sinx+cosx)+c1(8) u=x2⇒du=12dx⇒∫e−x2/4dx=2∫e−u2du=2⋅√π2erf(u)+c1=√πerf(x/2)+c1
4. (9) an=n!3n⇒limn→∞|an+1an|=limn→∞|(n+1)!3n+1⋅3nn!|=limn→∞|n+13|=∞⇒發散(10) {limn→∞1n=01n>1n+1⇒收斂 (alternating series test)
解答:5. (11) x+3y=x2y+y2⇒1+3y′=2xy+x2y′+2yy′⇒1−2xy=(x2+2y−3)y′⇒y′=dydx=1−2xyx2+2y−36. (12) f(x)=e−x2⇒f′(x)=−2xe−x2⇒f″(x)=(4x2−2)e−x2⇒{f(0)=1f′(0)=0f″(0)=−2⇒2∑n=0f[n](0)xnn!=1+0−22!x2=1−x2(13) g(x)=ln(1+x2)⇒g′(x)=2x1+x2⇒g″(x)=−2x2+2(1+x2)2⇒{g(0)=g′(0)=0g″(0)=2⇒2∑n=0g[n](0)xnn!=0+0+22!x2=x2
7. (14) R1=2∫21√x−1dx=2[23(x−1)3/2]|21=43R2=∫52(√x−1−(x−3))dx=[23(x−1)3/2−12x2+3x]|52=196⇒R1+R2=928. (15) f(x,y)=√x+√y⇒{fx=12√x≠0fy=12√y≠02x+2y=5⇒y=52−x⇒g(x)=f(x,52−x)=√x+√52−x⇒g′(x)=12√x−12√5/2−x=0⇒√x=√52−x⇒x=54⇒y=52−x=54⇒最大值=f(5/4,5/4)=√54+√54=√5解答:5. (11) x+3y=x2y+y2⇒1+3y′=2xy+x2y′+2yy′⇒1−2xy=(x2+2y−3)y′⇒y′=dydx=1−2xyx2+2y−36. (12) f(x)=e−x2⇒f′(x)=−2xe−x2⇒f″(x)=(4x2−2)e−x2⇒{f(0)=1f′(0)=0f″(0)=−2⇒2∑n=0f[n](0)xnn!=1+0−22!x2=1−x2(13) g(x)=ln(1+x2)⇒g′(x)=2x1+x2⇒g″(x)=−2x2+2(1+x2)2⇒{g(0)=g′(0)=0g″(0)=2⇒2∑n=0g[n](0)xnn!=0+0+22!x2=x2
沒有留言:
張貼留言