Loading [MathJax]/jax/element/mml/optable/MathOperators.js

網頁

2025年4月28日 星期一

114學年度四技二專統測--數學(C)詳解

114 學年度科技校院四年制與專科學校二年制
統 一 入 學 測 驗-數學(C)

解答:(1+2i)(2i)=2i+4i+2=4+3i=a+bi{a=4b=3a+b=7(D)
解答:ABACABAC=0(C)
解答:x3+2x5dx=14x4+x25x+C(C)
解答:2025=360×5+225tan2025+sec2025=tan225+sec225=tan45sec45=12(B)
解答:3+22=a21+b(21)(3+22)(21)=a+b(21)21+2=a+3b2b2{a+3b=12b=1{a=5/2b=1/2a2b2=244=6(A)
解答:{logH+=7logH+=4{a=107=104104=103×107=1000a(D)
解答:d2+3d=7d=3{a=2+d=1b=2+2d=41,4,p,qr=41=4{p=4r=16q=4r2=64p+q=16+64=80(C)
解答:{sin155=sin(180155)=sin25sin155sin55<0{cos222=cos(222180)=cos42cos122=cos(180122)=cos58cos222cos122=cos58cos42<0(sin155sin55,cos222cos122)(C)
解答:x2+kxk+3=0k24(3k)<0k2+4k12<0(k+6)(k2)<0k(6,2)=(a,b)ba=2(6)=8(C)
解答:{L1,2xy6L2,x+y8(B)
解答:Γ=4Γ:y2=4xc=1{(A):(c,0)=(1,0)(B)×:y2=4x(C)×:c=12(D)×:y=1(A)
解答:f(x)=2x33x212x+1f(x)=6x26x12f(x)=12x6f(x)=06(x2)(x+1)=0x=2,1{f(2)=18>0f(1)=18<0(,1),(2,)(D)
解答:{3x+4y=1144x+5y=2025[3445][xy]=[1142025][xy]=[ab]=[3445]1[1142025]=[5443][1142025](B)
解答:a1,a2,b1,b2:a1b1a2b2,b1a1b2a2,a1a2b1b281954C52C42×8=480(B)
解答:{(A):ABn=k(B)×:A+Bk=3,n=4(C)×:n=k(D)×:k=3,n=4(A)
解答:f(x)=axf(T)=aT=12(A)×:f(4T)=a4T=(12)4=116<110(B)×:f(6T)=(12)6=164<150(C)×:f(8T)=(12)8=1256>1500(D):f(10T)=(12)10=11024<11000(D)
解答:{A(1,4)B(3,4)C(5,2){¯AB=45¯BC=10¯CA=25102=(45)2+(25)2A=90 {=2r=¯BC=10r=5O=(B+C)/2=(1,1):(x1)2+(y+1)2=52(D)
解答:OAPOBP=27=¯PA¯PBP=(7A+2B)/9=(19,229)(A)
解答:{¯AB=2¯AC=k¯BC=3kcosC=k2+9k242k3k12=10k246k2k2=47aABC=12¯AC¯BCsinC=12k3k32=334k2=33447=337(B)
解答:¯AB=10×sin60×2=103(C)
解答:L:y+1=m(x1)x=1m+1=a(A):y=m1>0m<10<a<1(B)×:m1<0m>1a=1+1m>0(C)×:m=5a=1+1m
解答:A(0,0,0) \to B(0,0,10) \to C(5,0,10) \to D(5,-7,10) \to E(5,-7,6) \\ \Rightarrow \overline{AE}=\sqrt{25+49+36}=\sqrt{110},故選\bbox[red, 2pt]{(B)}
解答:f(x)=x^2 \Rightarrow f'(x)=2x \Rightarrow f'(4)=8 \Rightarrow L:y=8(x-4)+16 \Rightarrow x={y\over 8}+2  \\ \Rightarrow 陰影面積=\int_0^{16} {y\over 8}+2-\sqrt y\,dy = \left. \left[ {1\over 16}y^2 +2y-{2\over 3}y^{3/2}\right] \right|_0^{16} ={16\over 3},故選\bbox[red, 2pt]{(D)}
解答:假設C(0,0,0) \Rightarrow \cases{A(1,-3,-4) \\ B(x,y,z) \\D(-2,1,-2) } \Rightarrow \cases{\overrightarrow{AB }=(x-1,y+3,z+4) \\ \overrightarrow{DC}=(-2,1,-2)} \Rightarrow \overrightarrow{AB} \parallel \overrightarrow{DC} \\ \Rightarrow {x-1\over -2}=y+3={z+4\over -2} \Rightarrow \cases{x=-2y-5 \\ z=-2y-10} \Rightarrow B(-2y-5,y,-2y-10) \\ \Rightarrow \cases{\overrightarrow{AB}=(-2y-6,y+3,-2y-6) \\ \overrightarrow{CB}=(-2y-5,y,-2y-10)} \Rightarrow \overrightarrow{AB} \bot \overrightarrow{CB} \Rightarrow (-2y-6,y+3,-2y-6)\cdot (-2y-5,y,-2y-10)=0\\ \Rightarrow 9y^2+57y+90=0 \Rightarrow (3y+9)(3y+10)=0 \Rightarrow \cases{y=-3 \Rightarrow B(1,-3,-4)=A,不合\\ y=-10/3} \\ \Rightarrow \overline{AB} =\sqrt{(-2y-6)^2+(y+3)^2+(-2y-6)^2} =\sqrt{9y^2+54y+81} =\sqrt{-3y-9} =1,故選\bbox[red, 2pt]{(A)}

解答:體積=f(a) =(3-2a)(2-4a)a =8a^3-16a^2+6a \Rightarrow f'(a)=24a^2-32a+6=0\\ \Rightarrow a={16-4\sqrt 7\over 24} ={4-\sqrt 7\over 6},故選\bbox[red, 2pt]{(B)}

====================== END ==========================
解題僅供參考,其他統測試題及詳解



沒有留言:

張貼留言