網頁

2025年6月18日 星期三

114年桃園市國中教甄聯招-數學詳解

 桃 園 市 1 1 4 年 國 民 中 學 新 進 教 師 甄 選

專業科目: 請依照題意,從四個選項中選出一個正確或最佳答案 (共 50 題,每題 2 分,合計 100 分)

解答:$$\begin{array} {r}a& b& c& abc & a/|a|&b/|b|& c/|c|& |abc|/abc& A\\\hline +& + & +& +& 1& 1& 1& 1 &4\\ +& + & -& -&1&1& -1&-1& 0\\ +& -& +& -& 1&-1& 1& -1& 0\\ +& - &-& +& 1&-1&-1 & 1& 0\\\hdashline -& +& +& -&-1&1&1&-1& 0\\ -&+& -&+& -1& 1&-1&1& 0\\ -&-& +& +& -1&-1& 1&1& 0\\ -&-&-&-&-1&-1&-1&-1& -4\\\hline & & & & & & & & 0 \end{array}\\,故選\bbox[red, 2pt]{(C)}$$
解答:$${Cov(X,Y)\over \sigma(X)\sigma(Y)} =-.04\Rightarrow {Cov(X-2,2Y) \over \sigma(X-2)\sigma(2Y)} = {2Cov(X,Y) \over 2\sigma(X)\sigma(Y)}=-0.4,故選\bbox[red, 2pt]{(B)}$$
解答:$$\cases{2^1 \to 2\\ 2^2\to 4\\ 2^3\to 8\\ 2^4\to 6\\ 2^5\to 2\\ 2^6 \to 4\\ \cdots} \Rightarrow 循環數為4 \Rightarrow 94 \equiv 2 \text{ mod 4} \Rightarrow 2^{94} 末位數為4\\ \Rightarrow 2^{94}+1末位數字為5 \Rightarrow 2^{a+94}+2^a =2^a(2^{94}+1)末位數字為0,故選\bbox[red, 2pt]{(A)}$$
解答:$$假設v(x)=mx+n \Rightarrow v(3x-1)=3mx-m+n=5x+4 \Rightarrow \cases{3m=5\\ -m+n=4} \\ \Rightarrow \cases{m=5/3\\ n=17/3 =d/c} \Rightarrow c+d=20,故選\bbox[red, 2pt]{(D)}$$
解答:$$3a-4\ge 2a+1 \Rightarrow a\ge 5\\ {3a-4\over 2a+1}=k\in \mathbb Z \Rightarrow (3-2k)a=k+4 \Rightarrow a={k+4\over 3-2k} \in \mathbb N\\ 只有k=1(即a=5)符合條件,故選\bbox[red, 2pt]{(B)}$$
解答:$$\tan 30^\circ={1\over \sqrt 3} ={2\tan 15^\circ\over 1-\tan^2 15^\circ} \Rightarrow \tan 15^\circ =2-\sqrt 3 \Rightarrow \overline{AC}=\overline{BC}\tan \angle ABC=\tan 15^\circ=2-\sqrt 3\\,故選\bbox[red, 2pt]{(B)}$$
解答:$$\cases{(C)(10c+a)(10d+b) =100cd+ 10(bc+ad)+ab\\ (D)(10d+a)(10c+b)=100cd+10(bd+ac)+ab} \Rightarrow (D)\gt (C),故選\bbox[red, 2pt]{(D)}$$
解答:$$假設甲有\cases{50元硬幣a枚\\ 10元硬幣a枚} \xrightarrow{某乙兌換後}甲有\cases{50元硬幣(a+15)/3=a-3枚\\ 10元硬幣a+15枚} \\ \Rightarrow a=12 \Rightarrow 甲有50\times(12-3)+10\times(12+15) =450+270=720,故選\bbox[red, 2pt]{(B)}$$
解答:$$假設a為不含稅的價錢 \Rightarrow a(1+20\%)=120 \Rightarrow a=100 \Rightarrow 稅金=20\%\times a=20,故選\bbox[red, 2pt]{(B)}$$
解答:$${384\over 75}=5.12 \Rightarrow 大小齒輪總和為6.12a =6{3\over 25}a 為一整數\Rightarrow 6.12\times 25=153,故選\bbox[red, 2pt]{(D)}$$


解答:$${1\over 2}\begin{Vmatrix}1 &2  &1  \\4 & -2 & 1 \\1 & -6 &1\end{Vmatrix} ={1\over 2}\cdot 24=12,故選\bbox[red, 2pt]{(A)}$$
解答:$$A=\begin{bmatrix} 3&-1\\ -1& 3\end{bmatrix} \Rightarrow \det(A-\lambda I)=(\lambda-3)^2-1=(\lambda-2)(\lambda-4)=0 \\ \Rightarrow \lambda=2,4,故選\bbox[red, 2pt]{(C)}$$


解答:$$\cases{x\ge 1 \Rightarrow x+1+x-1=3 \Rightarrow x=3/2\\ -1\le x\le 1 \Rightarrow x+1+1-x=3不合\\ x\le -1 \Rightarrow -1-x+1-x=3 \Rightarrow x=-3/2} \Rightarrow {3\over 2}-{3\over 2}=0,故選\bbox[red, 2pt]{(A)}$$




解答:$$\cases{(a,b)=(\cos \alpha,\sin \alpha) \\(c,d)=(\cos \beta,\sin \beta)} \Rightarrow ac+bd=\cos \alpha \cos \beta+\sin \alpha\sin \beta= \cos(\alpha-\beta) \Rightarrow -1\le ac+bd\le 1\\,故選\bbox[red, 2pt]{(D)}$$

解答:$$\int_1^\infty {1\over 1+x^2}\,dx =\left. \left[ \tan^{-1}x \right] \right|_1^\infty ={\pi\over 2}-{\pi\over 4}={\pi\over 4},故選\bbox[red, 2pt]{(B)}$$
解答:$$a=\log_4 12={\log 12\over \log 4} ={\log 4+\log 3\over \log 4}=1+{\log 3\over 2\log 2} \Rightarrow {\log 3\over \log 2}=2(a-1) \\ \Rightarrow \log_{\sqrt 3} 12 ={\log 12\over \log \sqrt 3} ={2\log 12\over \log 3} ={2(2\log 2+\log 3)\over \log 3} ={4\log 2\over \log 3}+2 ={4\over 2(a-1)}+2 \\={2\over a-1}+2={2a\over a-1},故選\bbox[red, 2pt]{(D)}$$

解答:$$f(x)=x^3-3x+1 \Rightarrow f'(x)=3x^2-3=0 \Rightarrow x=\pm 1 \Rightarrow \cases{f(1)=-1\\ f(-1)=3} \Rightarrow f(1)f(-1)\lt 0 \\ \Rightarrow f(x)=0有三實根,故選\bbox[red, 2pt]{(D)}$$

解答:$$\cases{x\ge -2 \Rightarrow x^2-x-2\lt 0 \Rightarrow (x-2)(x+1)\lt 0 \Rightarrow -1\lt x\lt 2\\ x\le -2 \Rightarrow x^2+x+2 =(x+{1\over 2})^2+{7\over 4}\lt 0 不合} \Rightarrow -1\lt x\lt 2,故選\bbox[red, 2pt]{(A)}$$

解答:$$P在橢圓上\Rightarrow P(4\cos \theta, 3\sin \theta) \Rightarrow P至x+y=7的距離d={|4\cos \theta+3\sin \theta-7|\over \sqrt 2} \\ 由於4\cos\theta+3\sin \theta=5\sin(\theta+\alpha) \Rightarrow d的最小值={|5-7|\over \sqrt 2}=\sqrt 2,故選\bbox[red, 2pt]{(C)}$$

解答:$$令g(x)=f(x)-1 \Rightarrow g(-1)=g(0)=g(1)=0 \Rightarrow -1,0,1為g(x)=0的三根\\ \Rightarrow g(x)=f(x)-1=a(x+1)x(x-1) \Rightarrow g(-2)=f(-2)-1=-6=a\cdot (-1) \cdot (-2)\cdot (-3) \Rightarrow a=1 \\ \Rightarrow f(x)-1=(x+1)x(x-1) \Rightarrow f(x)=(x+1)x(x-1)+1 \Rightarrow f(2)=3\cdot 2\cdot 1+1=7,故選\bbox[red, 2pt]{(B)}$$

解答:$$x+y+z+w=6 \Rightarrow (x-1)+(y-1)+(z-1)+(w-1) =2 \Rightarrow H^4_2=C^5_2=10,故選\bbox[red, 2pt]{(C)}$$



解答:$$1+6+6\times 2+6\times 3+\cdots+6\times 6=127,故選\bbox[red, 2pt]{(D)}$$


解答:$$\cases{\angle ACB=\angle CDA\\ \angle DCA= \angle CAB} \Rightarrow \triangle DCA \sim \triangle CAB (AAA) \Rightarrow {\overline{DC} \over \overline{AC}} ={\overline{DA} \over \overline{BC}} ={\overline{AC} \over \overline{AB}} \\\Rightarrow {12\over \overline{AC}} ={15\over \overline{BC}} ={\overline{AC} \over 27} \Rightarrow \overline{AC}^2=12\cdot 27 \Rightarrow \overline{AC} =18 \Rightarrow 12\overline{BC}=18\cdot 15 \Rightarrow \overline{BC}=22.5\\,故選\bbox[red, 2pt]{(B)}$$


解答:$$顯然是二選一,故選\bbox[red, 2pt]{(C)}$$


解答:$$三數分別為0,1,-1 \Rightarrow \cases{a=-1\\ b=1} \Rightarrow a^{100}+b^{100}=1+1=2,故選\bbox[red, 2pt]{(D)}$$



解答:$$已知正三角形邊長為a \Rightarrow 三角形面積={\sqrt 3\over 4}a^2 \Rightarrow 內切圓半徑={\sqrt 3\over 4}a^2 \times {2\over 3a}={\sqrt 3\over 6}a\\ 已知圓半徑r \Rightarrow 內接正三角形中線長{3r\over 2} \Rightarrow 邊長為{3r\over 2}\cdot {2\over \sqrt 3}=\sqrt 3 r\\ 因此O_1半徑r_1={\sqrt 3\over 6}\times 3={\sqrt 3\over 2} \Rightarrow O_1面積={3\over 4}\pi \Rightarrow 內接正三角形邊長={3\over 2} \\ \Rightarrow O_2半徑r_2={\sqrt 3\over 6}\times {3\over 2}= {\sqrt 3\over 4} \Rightarrow O_k半徑r_k={\sqrt 3\over 2^k} \\ \Rightarrow \sum_{k=1}^\infty a_k = \sum_{k=1}^\infty \left( \sqrt 3\over 2^k\right)^2\pi = \sum_{k=1}^\infty {3\over 4^k}\pi =3\pi\cdot {1/4\over 1-1/4} =\pi,故選\bbox[red, 2pt]{(A)}$$
解答:$$a_4,a_5,a_6,a_7需為連續,即a_4+a_5+ a_6+a_7=4a_4+6\\ \cases{(A)4a_4+6=179-67=112  \Rightarrow a_4不是整數\\ (B)4a_4+6=179-69=110 \Rightarrow a_4=26\\(C)4a_4+6=179-73=106 \Rightarrow a_4=25\\(D)4a_4+6=179-75 =104 \Rightarrow a_4不是整數},故選\bbox[red, 2pt]{(B)}$$



解答:$$\cases{S_n={a_1(1-r^n)\over 1-r} =200\\ S_{2n}={a_1(1-r^{2n})\over 1-r} =300} \Rightarrow {1-r^n\over 1-r^{2n}} ={1\over 1+r^n}={2\over 3} \Rightarrow r^n={1\over 2} \\ S_{4n} ={a_1(1-r^{4n}) \over 1-r} \Rightarrow {S_{2n} \over S_{4n}}= {1-r^{2n} \over 1-r^{4n}} ={1\over 1+r^{2n}} ={1\over 1+1/4} ={4\over 5} \\ \Rightarrow S_{4n} ={5\over 4}S_{2n} ={5\over 4}\cdot 300=375,故選\bbox[red, 2pt]{(B)}$$

解答:$$\cases{\sum a_i=-18\\ \sum a_i^2=42} \Rightarrow 有10個-2,2個1,其它都是0 \Rightarrow \sum a_i^3=(-2)^3\times10+ 1^3\times 2=-78,故選\bbox[red, 2pt]{(B)}$$

解答:$$最少情形:B用光,剩下由A及C配置\\\qquad 假設A用a克, C用40-a克,則0.05a+60\cdot 0.08+(40-a)0.09=7 \Rightarrow a=35\\最多情形:C用光,剩下由A及B配置\\\qquad 假設A用b克, B用59-b克,則0.05b+(59-b)0.08+41\cdot 0.09=8 \Rightarrow b=47 \\ \Rightarrow a+b=82,故選\bbox[red, 2pt]{(D)}$$
解答:$$後28項皆為1,前11項皆為0, 因此\cases{\left[a+{11\over 40}\right] =0\\\left[a+{12\over 40}\right] =1},可取a={28\over 40} \Rightarrow [10a]=7,故選\bbox[red, 2pt]{(A)}$$
解答:$$6顆白球有5個間隔,每個間隔先插入2個紅球,剩下14-10=4顆紅球\\ 將4紅球插入7個間隔,有H^7_4=210種方法,故選\bbox[red, 2pt]{(C)}$$
解答:


$$假設延長\overline{AB}及\overline{CD}使其交於P,並假設\triangle PAD面積為a\\ 則\overline{CE}為\triangle CPB的中垂線 \Rightarrow \triangle CEB=\triangle PEC=a+7,又{\triangle PAD\over \triangle PBC} ={\overline{PA}^2 \over \overline{PB}^2} ={k^2\over 16k^2}={1\over 16} \\ \Rightarrow 16a=a+7+a+7 \Rightarrow a=1 \Rightarrow 梯形面積=7+7+a=15,故選\bbox[red, 2pt]{(D)}$$
解答:



$$由上圖可知,側面梯形的高h=\sqrt 2 \Rightarrow 梯形面積=4\sqrt 2 \Rightarrow 表面積=頂面+底面+四個側面\\= 9+25+16\sqrt 2 =34+16\sqrt 2\Rightarrow a+b+c=34+16+2=52,故選\bbox[red, 2pt]{(A)}$$
解答:$$假設切去小金字塔的高為a \Rightarrow {a\over a+1}={3\over 5} \Rightarrow a={3\over 2}\\ \Rightarrow \cases{小金字塔體積={1\over 3}\cdot 9\cdot {3\over 2}={9\over 2} \\ 大金字塔體積={1\over 3}\cdot 25\cdot ({3\over 2}+1)={125\over 6}} \Rightarrow 四角錐體積={125\over 6}-{9\over 2}={49\over 3} \Rightarrow d+e=52\\,故選\bbox[red, 2pt]{(A)}$$
解答:$$\text{Polya' Urn: }無論在第幾回合,補充黑球的機率皆是{3\over 3+2}=0.6,故選\bbox[red, 2pt]{(C)}$$
解答:$$\cases{A(1,2)\\ B(0,1)} 皆在直線x-y+1=0上\Rightarrow \cases{A'=F(A)=(-2,1) \\ B'=F(B) =(-1,0)} \\ \Rightarrow \overleftrightarrow{A'B'}:y=-x-1,故選\bbox[red, 2pt]{(A)}$$
解答:$$\begin{vmatrix}1 &-2  & 1 \\0 & 1 & 2 \\2 & -3 & c \end{vmatrix} =0 \Rightarrow c-8-2+6=0 \Rightarrow c=4,故選\bbox[red, 2pt]{(B)}$$
解答:$$\lim_{n\to 0} {\cos(2x)-1\over x^2} =\lim_{n\to 0} {-2\sin(2x)\over 2x} =\lim_{n\to 0} {-4\cos(2x)\over 2} =-2,故選\bbox[red, 2pt]{(D)}$$
解答:$$\lim_{n\to \infty}{\sqrt 1+\cdots+ \sqrt n\over n^{3/2}} =\lim_{n\to \infty} \sum_{k=1}^n{\sqrt k\over n^{3/2}}  =\lim_{n\to \infty} \sum_{k=1}^n{1\over n}\cdot \sqrt{k\over n}  \\=\int_0^1 \sqrt x\,dx = \left. \left[{2\over 3}x^{3/2} \right] \right|_0^1 ={2\over 3},故選\bbox[red, 2pt]{(A)}$$
解答:$$\cos {2\pi\over 5} ={\sqrt 5-1\over 4} \Rightarrow \cos {4\pi\over 5} =2\cos^2{2\pi\over 5}-1={-1-\sqrt 5\over 4}  \Rightarrow \cos{2\pi\over 5}+\cos{4\pi\over 5}=-{1\over 2},故選\bbox[red, 2pt]{(D)}$$
解答:$$f(x)={x^2+3\over \sqrt{x^2+2}} \Rightarrow f'(x)={-x^3+2x(x^2+2)-3x \over (x^2+2)^{3/2}} =0 \Rightarrow x^3+x=x(x^2+1)=0 \\ \Rightarrow x=0 \Rightarrow f(0)={3\over \sqrt 2} ={3\sqrt 2\over 2},故選\bbox[red, 2pt]{(C)}$$
解答:$$\cos \theta={5^2+6^2-13\over 2\cdot 5\cdot 6}={4\over 5} \Rightarrow \sin \theta={3\over 5 } \Rightarrow 三角形面積={1\over 2}\cdot 5\cdot 6\sin\theta=9,故選\bbox[red, 2pt]{(A)}$$
解答:$$x={4\over \sqrt 5+1}=\sqrt 5-1 \Rightarrow (x+1)^2=5 \Rightarrow x^2+2x-4=0\\ \Rightarrow x^3+2x^2-4x+1=x(x^2+2x-4)+1=0+1=1,故選\bbox[red, 2pt]{(A)}$$
解答:$$3個上及3個去排列,但第一個一定是上,最後一個一定是下,剩下2個上及2個下去排列\\,共有{4!\over 2!2!}=6個,再扣除上下下上上下(不可能跳到地底下),剩下5種跳法,故選\bbox[red, 2pt]{(A)}$$
解答:

$$假設\cases{\overline{AB}=5\\ \overline{AC}=3\\ \overline{BC}=4 },則\angle C=90^\circ \Rightarrow \cases{C(0,12/5) \\A(-9/5,0) \\B(16/5,0)} \\ \Rightarrow y=-{5\over 12}(x-{16\over 5})(x+{9\over 5}) \Rightarrow \cases{a=-5/12\\ c=12/5} \Rightarrow ac=-1,故選\bbox[red, 2pt]{(B)}$$
解答:$$\cases{a^2+2a-1=0\\ b^4-2b^2-1=0} \Rightarrow \cases{a=-1\pm \sqrt 2\\ b^2=1\pm \sqrt 2}  \Rightarrow 取\cases{a=-1+\sqrt 2\\ b^2=1-\sqrt 2}以符合ab^2\ne 1 \\ \Rightarrow ({ab^2+b^2+1\over a})^2 =({-3+2\sqrt 2+1-\sqrt 2+1\over \sqrt 2-1})^2=({\sqrt 2-1\over \sqrt 2-1})^2=1,故選\bbox[red, 2pt]{(A)}$$
解答:$$a以二進位表示,其中有三個1,其餘皆為0,最小的就是111_2=7,第2小的就是1011_2=11\\ 考慮7位數的二進位數字,其中有三個1,四個0,共有{7!\over 3!4!}=35個\\ 因此第36是10000011_2,第37是10000101_2,第38是10000110_2=134,故選\bbox[red, 2pt]{(B)}$$
解答:$$直線L:3x-y=0 \Rightarrow B對稱L的對稱點B'(-{3\over 5},-{4\over 5}) \Rightarrow \overleftrightarrow{AB'}:y=-{3\over 4}x-{5\over 4} \\ \Rightarrow P= \overleftrightarrow{AB'} \cap L =(-{1\over 3},-1) \Rightarrow c=-{1\over 3},故選\bbox[red, 2pt]{(D)}$$
解答:$$a_n=\sum_{k=1}^n k={n(n+1)\over 2} \Rightarrow b_n= \sum_{k=1}^n {1\over a_k} = \sum_{k=1}^n {2\over k(k+1)} =2 \sum_{k=1}^n\left( {1\over k}-{1\over k+1}\right) \\=2 \left( {1\over 1}-{1\over n+1}\right) \Rightarrow \lim_{n\to \infty} b_n=2,故選\bbox[red, 2pt]{(B)}$$


====================== END ==========================
解題僅供參考,其他教甄試題及詳解





沒有留言:

張貼留言