Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

網頁

2020年7月29日 星期三

109年高考三級-應用數學詳解


109年公務人員高等考試三級考試試題

類科:氣象學
科目:應用數學(包括微積分、微分方程與向量分析)


解:
AA:A=[abbbbabbbbabbbba]det(AλI)=0|aλbbbbaλbbbbaλbbbbaλ|=0λ44aλ3+(6a26b2)λ2(4a3+8b312ab2)λ+(a43b4+8ab36a2b2)=0(λ(ab))3(λ(a+3b))=0λ=ab,a+3ba>ba+3b>0


解:
{u(t)=2u(t)v(t)+et(1a)v(t)=3u(t)2v(t)et(1b)u(0)=1,v(0)=2(1a)v(t)=2u(t)u(t)+et(2a)(1b)2u(t)u


解:
令\vec F=\left[ \matrix{F_1\\ F_2\\ F_3}\right],\vec G=\left[ \matrix{G_1\\ G_2\\ G_3}\right] \Rightarrow \vec F\times \vec G =\left[ \matrix{F_2G_3-F_3G_2\\ F_3G_1-F_1G_3\\ F_1G_2-F_2G1}\right] \Rightarrow \text{div}(\vec F\times \vec G)= \left[ \matrix{D_x\\ D_y\\ D_z}\right] \cdot \left[ \matrix{F_2G_3-F_3G_2\\ F_3G_1-F_1G_3\\ F_1G_2-F_2G_1}\right]\\ 又(\text{curl}\vec F)\cdot \vec G-\vec F\cdot (\text{curl}\vec G)=\left(\left[ \matrix{D_x\\ D_y\\ D_z}\right]\times\left[ \matrix{F_1\\ F_2\\ F_3}\right] \right) \cdot \left[ \matrix{G_1\\ G_2\\ G_3}\right]-\left[ \matrix{F_1\\ F_2\\ F_3}\right] \cdot \left(\left[ \matrix{D_x\\ D_y\\ D_z}\right]\times\left[ \matrix{G_1\\ G_2\\ G_3}\right] \right) \\= \left[ \matrix{D_yF_3-D_zF_2\\ D_zF_1-D_xF_3\\ D_xF_2-D_yF_1}\right] \cdot \left[ \matrix{G_1\\ G_2\\ G_3}\right]-\left[ \matrix{F_1\\ F_2\\ F_3}\right] \cdot \left[ \matrix{D_yG_3-D_zG_2\\ D_zG_1-D_xG_3\\ D_xG_2-D_yG_1}\right] \\ =D_yF_3G_1-D_zF_2G_1+ D_zF_1G_2-D_xF_3G_2+ D_xF_2G_3-D_yF_1G_3 - \\ \qquad \qquad(F_1D_yG_3-F_1D_zG_2+ F_2D_zG_1-F_2D_xG_3+ F_3D_xG_2-F_3D_yG_1)\\ = (D_xF_2G_3+F_2D_xG_3-D_xF_3G_2) +(D_yF_3G_1+F_3D_yG_1-D_yF_1G_3-F_1D_yG_3) \\ \qquad \qquad +(D_zF_1G_2+F_1D_zG_2-D_zF_2G_1-F_2D_zG_1) \\ =D_x(F_2G_3-F_3G_2)+D_y(F_3G_1-F_1G_3) +D_z(F_1G_2-F_2G_1)\\ =\left[ \matrix{D_x\\ D_y\\ D_z}\right] \cdot \left[ \matrix{F_2G_3-F_3G_2\\ F_3G_1-F_1G_3\\ F_1G_2-F_2G_1}\right] =\text{div}(\vec F\times \vec G),故得證


解:
(一)f(x)=a_0+ \sum_{n=1}^\infty \left(a_n \cos {n\pi x\over L} +b_n\sin {n\pi x\over L} \right),其中 \cases{a_0={1\over 2L}\int_{-L}^L f(x)\;dx\\ a_n={1\over L}\int_{-L}^Lf(x)\cos {n\pi x\over L}\;dx,n=1,2,...\\ b_n={1\over L}\int_{-L}^Lf(x)\sin {n\pi x\over L}\;dx,n=1,2,...}(二)基底函數\phi (x)=1,\sin {n\pi x\over L}, \cos{n\pi x\over L},其中n=1,2,...\\ \phi (x)=1\Rightarrow \int_{-L}^L \phi (x)^2\;dx =\int_{-L}^L 1\;dx = 2L;\\ \phi (x)=\sin {n\pi x\over L} \Rightarrow \int_{-L}^L \phi (x)^2\;dx =\int_{-L}^L \sin^2 {n\pi x\over L}\;dx= \left. \left[ {x\over 2}-{L\over 4n\pi} \sin{2n\pi x\over L}\right] \right|_{-L}^L={L\over 2}-(-{L\over 2})=L;\\ \phi (x)=\cos {n\pi x\over L} \Rightarrow \int_{-L}^L \phi (x)^2\;dx =\int_{-L}^L \cos^2 {n\pi x\over L}\;dx=\left. \left[ {x\over 2}+{L\over 4n\pi} \sin{2n\pi x\over L}\right] \right|_{-L}^L={L\over 2}-(-{L\over 2})=L\\ \Rightarrow \bbox[red, 2pt]{\cases{\phi (x)=1\Rightarrow \int_{-L}^L \phi (x)^2\;dx=2L\\ \phi (x)=\sin {n\pi x\over L} \Rightarrow \int_{-L}^L \phi (x)^2\;dx =L\\ \phi (x)=\cos {n\pi x\over L} \Rightarrow \int_{-L}^L \phi (x)^2\;dx =L}}(三)f(x)=a_0+ \sum_{n=1}^\infty \left(a_n \cos {n\pi x\over L} +b_n\sin {n\pi x\over L} \right)\\將上式同乘f(x)再積分(x=-L至x=L) \Rightarrow \\\int_{-L}^Lf^2(x)\;dx = a_0\int_{-L}^Lf(x)\;dx+ \sum_{n=1}^\infty \left(a_n \int_{-L}^L\cos {n\pi x\over L} \;dx+b_n\int_{-L}^L\sin {n\pi x\over L} \;dx\right) \\ =2La_0^2+\sum_{n=1}^\infty \left(La_n^2 +Lb_n^2\right) = \bbox[red, 2pt]{L\cdot 2a_0^2+ L\cdot\sum_{n=1}^\infty(a_n^2+b_n^2) }


解:
首先坐標轉換,將(x,y,z)\to (r,\theta,\varphi),其中\cases{r=\sqrt{x^2+y^2+z^2}\\  \theta =\arccos {z\over r} \\ \varphi=\arctan{y\over x} }\\ 因此\left({\partial^2 \over \partial x^2}+ {\partial^2 \over \partial y^2}+ {\partial^2 \over \partial z^2}\right)w=0 \equiv w_{xx}+w_{yy}+w_{zz}=0 \\\xrightarrow{坐標轉換} {1\over r^2}\cdot{\partial \over \partial r}\left( r^2{\partial w\over \partial r}\right) +{1\over r^2\sin \theta}\cdot {\partial \over \partial \theta}\left(\sin\theta {\partial w\over \partial \theta} \right)+{1\over r^2\sin^2\theta } \cdot {\partial^2 w\over \partial \varphi^2} =0\cdots(1)\\ 由於w(\sqrt{x^2+y^2+z^2}) =w(r)代表w的變數只有r,沒有\varphi及\theta,也就是\cases{{\partial w\over \partial \varphi}=0\\ {\partial w\over \partial \theta}=0}\\ 因此(1)可減化成{1\over r^2}\cdot{\partial \over \partial r}\left( r^2{\partial w\over \partial r}\right) =0 \Rightarrow {1\over r^2}\cdot\left( 2r{\partial w\over \partial r} +r^2{\partial^2 w\over \partial r^2}\right) =0 \\ \Rightarrow 2r{\partial w\over \partial r} +r^2{\partial^2 w\over \partial r^2}=0 \Rightarrow 2{\partial w\over \partial r} +r{\partial^2 w\over \partial r^2}=0(相當於求:xy''+2y'=0的ODE)\\ \Rightarrow w=c_1r^0+c_2r^{-1} \Rightarrow \bbox[red, 2pt]{w=c_1+{c_2\over r},c_1,c_2為常數}


-- END   (僅供參考)  --



4 則留言:

  1. 第一題,我想到兩個條件
    tr(A)=所有特徵值相加=4a>0,即a>0
    det(A)=所有特徵值相乘>0

    回覆刪除
    回覆
    1. 並不能保證特徵值為正!例:-3,-1,4,5,四數相加,相乘都為正,但...

      刪除
  2. 我想再請教一下第一題,您是如何得知(λ-(a-b))^3 * (λ-(a+3b))=0呢?前面一個式子太複雜了,如何可以快速得到這一個步驟呢?
    謝謝

    回覆刪除
    回覆
    1. 矩陣(A-λI)只有對角線有a,其他都是b,所以λ=(a-b)就可以把對角線都變成b,行列式就是0了。接著用長除法就可以找到另一個特徵值。

      刪除