網頁

2021年6月19日 星期六

93年大學指考(補考)-數學乙詳解

 九十三學年度指定科目考試

敏督利颱風受災地區考生補救考試-數學乙

一、單選題

解答:$$已知\cases{n=200\\ \mu=50\\ cv=\sigma/\mu=\sigma/50 =0.1 \Rightarrow \sigma=5\\ x=65} \Rightarrow x-\mu=65-50=15=3\sigma\\ 由於 P(|x-\sigma |\le 3\sigma)= 99.7\% \Rightarrow 張三的分數在前0.15\% ,即0.0015\times 200=0.3人\\故選\bbox[red, 2pt]{(1)}$$
解答:$$假設鞋高h公分,則{90+h\over 150+h}={60\over 90+h} \Rightarrow h^2+120h-900=0 \Rightarrow h={-120+60\sqrt 5\over 2}\\ \Rightarrow h\approx 7.1,故選\bbox[red, 2pt]{(4)}$$
解答

$$假設過原點直線L方程式:y=ax,a\gt 0 \Rightarrow \cases{f(x)=2x^2=ax\\ g(x)= 3x^2=ax} \Rightarrow \cases{x(2x-a)=0\\ x(3x-a)=0}\\ \Rightarrow \cases{x=a/2\\ x=a/3} \Rightarrow \cases{A(a/3,a^2/3)\\ B(a/2,a^2/2)}\Rightarrow {\overline{OB} \over \overline{OA}}  ={\overline{OB'} \over \overline{OA'}}={a/2\over a/3} =1.5,故選\bbox[red,2pt]{(3)}$$

二、多選題

解答:$$(x-4)(x-6)(x-8)+(x-5)(x-7)(x-9)=0 \Rightarrow \cases{\cases{(x-4)(x-6)(x-8) \gt 0\\ (x-5)(x-7)(x-9)\lt 0} \\ \cases{(x-4)(x-6)(x-8) \lt 0\\ (x-5)(x-7)(x-9)\gt 0}} \\ \Rightarrow \cases{\cases{x\gt 8 或 4\lt x\lt 6\\ 7\lt x\lt 9 或x\lt 5} \Rightarrow 8\lt x\lt 9 或4\lt x\lt 5\\\cases{6\lt x\lt 8 或x\lt 4\\ x\gt 9或 5\lt x\lt 7} \Rightarrow 6\lt x\lt 7} \Rightarrow 4\lt x\lt 5或6\lt x\lt 7或8\lt x\lt 9\\故選\bbox[red,2pt]{(135)}$$
解答:$$(1)\log(1+9\%)^{72/9}= 8\log 1.09 =8\times 0.0374=0.2992 \lt \log 2\\ (2)\log (1+8\%)^{72/8}= 9\log 1.08= 9\times 0.0334 = 0.3006   \lt \log 2\\(3) \log{(1+6\%)^{72/6}} =12\log 1.06 = 12\times 0.0253 = 0.3036 \gt \log 2 \\(4)\log (1+4\%)^{72/4} =18\log 1.04=18\times 0.017= 0.306 \gt \log 2\\(5)\log (1+3\%)^{72/3} =24\log 1.03= 24\times 0.0128 =0.3072 \gt \log 2\\ 故選\bbox[red, 2pt]{(345)}$$
解答:$$摩天輪一分鐘轉了{360^\circ \over 15} =24^\circ,因此x分鐘轉了24x度 \\\Rightarrow 阿美離地 r\sin(24x-90)+r+2 =20\sin(24x-90^\circ)+22 \equiv a\sin(bx+c)+d\\ \Rightarrow \cases{a=20\\ b=24^\circ = {2\pi\over 15}\\ c=-90\\ d=22},故選\bbox[red, 2pt]{(13)}$$

三、選填題

解答:$$新生兒男女色盲比=1.1\times 5\%:1\times 0.3\% = {1.1\times 5\%\over 0.3\%}:1 \approx 18.3:1 \approx \bbox[red, 2pt]{18}:1$$
解答:$$相交於一直線\Rightarrow 無限多解\Rightarrow \begin{vmatrix}2 & 3& -1\\5 & 7 & 1\\ 1 & 2& -k \end{vmatrix} =k-4 =0 \Rightarrow k=\bbox[red,2pt]{4}$$
解答:$$全隊都是男生\to 1種組隊法;\\全隊都是女生\to 1種組隊法;\\不分男女\to C^{10}_5=252種組隊法\\ 共有252-1-1=\bbox[red,2pt]{250}種組隊法符合要求$$
解答

$$\cases{A(0,0)\\ B(2,1)\\ C(3,0)\\D(a,0)\\ E(a+b,0)} \Rightarrow \cases{\overleftrightarrow{AB}:x=2y \\\overleftrightarrow{BC}:x=3-y} \Rightarrow \cases{G(a,a/2)\\ F(a+b,3-a-b)} \Rightarrow \cases{G、F有相同的y坐標\\ E、F有相同的x坐標}\\\Rightarrow \cases{a/2=3-a-b\\ 3-a-b=b}  \Rightarrow \cases{a=3/2\\ b=3/4} \Rightarrow 正方形面積=b^2 =\bbox[red,2pt]{9\over 16}$$
解答

$$令\cases{\overline{AA_1}=a\\ \overline{A_1B_1}=b} \Rightarrow \cases{\overline{A_1B}= \overline{AC_1}= \overline{B_1C}=9a \\ \overline{B_1C_1} =\overline{C_1A_1}=a} \\ \triangle AA_1C_1 \Rightarrow \cos \angle A= \cos 60^\circ ={1\over 2}={a^2+81a^2-b^2 \over 18a^2} \Rightarrow b=\sqrt{73}a\\ \Rightarrow {\overline{A_1B_1} \over \overline{AB}} ={b\over a} ={\sqrt{73}a \over 10a} =\bbox[red, 2pt]{\sqrt{73}\over 10}$$
解答
(1)$$N=10k+5 \Rightarrow N^2=100k^2+100k+25 =100(k^2+k)+25 \Rightarrow \bbox[red,2pt]{\cases{商數=k^2+k\\ 餘數=25}}$$(2)$$N^2 =100(k^2+k)+25 \Rightarrow N^2的百位數字就是k^2+k的個位數數字\\ 由於  \cases{k是奇數\Rightarrow k^2也是奇數\Rightarrow k^2+k=奇數+奇數=偶數\\ k是偶數\Rightarrow k^2也是偶數\Rightarrow k^2+k=偶數+偶數=偶數}\\\Rightarrow k^2+k的個位數字是偶數 \Rightarrow N^2的百位數字是偶數,\bbox[red,2pt]{故得證}$$

解答
(1)$$d_{金}=\alpha+\beta \cdot 2^0= \bbox[red,2pt]{\alpha+\beta}$$(2)$$\cases{d_金=\alpha+\beta =0.7\\ d_火=\alpha+\beta \cdot 2^2= d_金+0.9} \Rightarrow \cases{\alpha+\beta =0.7\\ \alpha+ 4\beta =1.6} \Rightarrow \bbox[red,2pt]{\cases{\alpha=0.4\\ \beta=0.3}}$$(3)$$d_地=\alpha+\beta \cdot 2^1 =0.4+ 0.3\times 2=\bbox[red,2pt]{1}$$
============================== end ====================================
解題僅供參考,其他指考試題及詳解

沒有留言:

張貼留言