Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

網頁

2021年8月30日 星期一

107年新竹女中教甄-數學詳解

國立新竹女中 107 學年度代理教師甄選

一、填充題(每格 5 分,共 70 分)

解答

g(x)=xkf(x)+x+k=0f(x)=g(x)y=g(x)=xk1{y=g(x)y=ex,x0k1{y=g(x)y=lnx,x>0k1
解答x4+23(log2k)x2+4(log2k)2=0x2=23(log2k)±12(log2k)216+4(log2k)22=3(log2k)±2(log2k)21{(log2k)21>03(log2k)2(log2k)21>0{(log2k)2>13(log2k)>2(log2k)21log2k<0{log2k>1log2k<13(log2k)2>4(log2k)244>(log2k)2k<1{log2k>1log2k<12>log2k>2k<1{1<log2k<22<log2k<1k<11/4<k<1/2

解答an=¯AnAn+1=24n,nNx=8+a12a2a32+a4+a52a6a72+a8+=8+(a4+a8+a12+)+12(a1+a5+a9+)12(a3+a7+a11+)(a2+a6+a10+)=8+(a411/16)+12(a111/16)12(a311/16)(a211/16)=8+1615+1281615122161541615=8+165(21)y=a12a32+a52a72+a92=12(a1+a5+a9+)12(a3+a7+a11+)=12(a111/16)12(a311/16)=12816151221615=1625x+y=8+165(21)+1625=24+3225
解答{ABCD{ACBDABCDA7ABB6{B=CC1DCD6BCC5DC,DBD57×6×6+7×6×5×5=252+1050=1302
解答P()=P()+P()P()=35+3+45+43+45+3+4=772
解答
PC使PD=2PCPQ=PA+PDB¯PQ{cosAPQ=32+62(36)22×3×6=14sinAPQ=154cosDPQ=62+(36)2322×6×36=386sinDPQ=108PABC=PAB+PBC=12(3×3×154+3×6×108)=3152
解答:3sinC=2×6=12sinC=14cosC=154=|1cosAcosBcosA1cosCcosBcosC1|=1+2cosAcosBcosC+cos2A+cos2Bcos2C=A+B+C=180cosC=cos(A+B)cos2C=cos2(A+B)=(cosAcosBsinAsinB)2=cos2Acos2B2cosAcosBsinAsinB+(1cos2A)(1cos2B)=1+2cos2Acos2B2cosAcosBsinAsinBcos2Acos2B=1+2cosAcosB(cosAcosBsinAsinB)cos2Acos2B=1+2cosAcosBcos(A+B)cos2Acos2Bcos2A+cos2B=1+2cosAcosBcos(A+B)cos2C=2+2cosAcosB(cosC+cos(A+B))2cos2C=2+02cos2C=22×1516=18
解答{u=(1,2,3)v=(3,1,2)LMθcosθ=uv|u||v|=12LM60120ABCD=|AB||CD|cosθ=65(±12)=±15AC{¯AC¯AB¯AC¯CD{ACAB=0ACCD=0¯BD2=|BD|2=(BA+AC+CD)(BA+AC+CD)=|BA|2+|AC|2+|CD|2+2(BAAC+ACCD+CDBA)=62+42+52+2(0+0±15)=77±30=10747¯BD=10747

解答
{¯ABAPB=90¯ADAPD=90BPD{A=90¯AD=3ׯAB{ABD=60ADB=30{E¯ABF¯AD{AEP=120AFP=60{EAP=(62)2π×120360=12πFAP=(322)2π×60360=34π{EAP=12ׯAPׯBP=14×322×126=383APD=14ׯAPׯPD=12×322×326=983=(12π343)+(34π943)=54π323

解答
ABD{DAB=CABCAD=γαABD=90+CBD=90+βADB=180DABABD=90+αβγ¯AB¯AD=sin(90+αβγ)sin(90+β)=cos(αβγ)cosβ=cos(αβγ)8/17¯AD=¯AC¯AB¯AD=¯AB¯AC=cosγ=cos(αβγ)8/17817cosγ=cos(αβγ)=cos(αβ)cosγ+sin(αβ)sinγ=(cosαcosβ+sinαsinβ)cosγ+(sinαcosβsinβcosα)sinγ=(45817+351517)cosγ+(35817151745)sinγ=7785cosγ3685sinγ3685sinγ=3785cosγtanγ=sinγcosγ=37/8536/85=3736
解答z=(x+y|xy|)÷2xyzxyz1114111214221314331414441514541614642115112225222325332425442525552625653116113226223336333436443536553636663259=32+5962=6136
解答{tanα+tanβ=(m+1)tanαtanβ=m+4:(m+1)24(m+4)0{tan(α+β)=(m+1)1(m+4)=m+1m+3(m5)(m+3)0m5m3(1)n=1tann1(α+β)|tan(α+β)|<1|m+1m+3|<1(m+1)2<(m+3)2m>2(2)(1)(2)m5
解答g(x)=x+ba{g(2)=0lim

解答區間[0,4]切成n段,每段長度為4/n \Rightarrow \cases{U_n={4\over n}(({4\over n})^3+({8\over n})^3+ \cdots +({4n\over n})^3) \\ L_n={4\over n}(0^3+({4\over n})^3+  \cdots +({4(n-1)\over n})^3) } \\ \Rightarrow U_n-L_n= {4\over n}\cdot 4^3= {256\over n} \lt 0.01 \Rightarrow n\gt 25600 \Rightarrow n=\bbox[red, 2pt]{25601}

二、計算或證明題(每題 10 分,共 30 分,須有計算或證明過程)

解答(2n-1)(2n+1)=4n^2-1 \lt 4n^2 \Rightarrow (2n-1)(2n+1) \lt (2n)^2\\ 令S=1\times 3\times 5\times \cdots (2n-1) \\\Rightarrow (2n+1)S^2 = 1^2\times 3^2 \times 5^2\times \cdots \times (2n-1)^2(2n+1)\\ =(1\times 3)(3\times 5)(5\times 7)\cdots ((2n-3)(2n-1))((2n-1)(2n+1)) \\ \lt 2^2\times 4^2 \times 6^2\times \cdots \times (2n)^2 \\ \Rightarrow (2n+1)S^2 \lt 2^2\times 4^2 \times 6^2\times \cdots \times (2n)^2 \Rightarrow \sqrt{2n+1}S \lt 2\times 4\times 6\times \cdots \times (2n) \\ \Rightarrow 0\lt {S\over 2\times 4\times 6\times \cdots \times (2n)} \lt {1\over \sqrt{2n+1}} \equiv 0\lt a_n \lt {1\over \sqrt{2n+1}} \\ \Rightarrow 0\lt \lim_{n\to \infty} a_n \lt \lim_{n\to \infty}{1\over \sqrt{2n+1}}=0 \Rightarrow \lim_{n\to \infty} a_n =\bbox[red, 2pt]{0}
解答y=x^3+ax^2+x+1 \Rightarrow  y'=3x^2+2ax+1\\ 令切點P(t,t^3+at^2+t+1),則斜率為3t^2+2at+1\\,過P之切線L: y=(3t^2+2at+1)(x-t)+t^3+at^2+t+1\\又L過(0,0) \Rightarrow -3t^3-2at^2-t+t^3+at^2+t+1=0 \Rightarrow f(t)=2t^3+at^2-1=0 有三相異根\\ \Rightarrow f'(t)=6t^2+2at=0 \Rightarrow 2t(3t+a)=0 \Rightarrow t=0,-a/3有極值 \Rightarrow f(0)f(-a/3)\lt 0\\ \Rightarrow -1(-2a^3/27+a^3/9-1)\lt 0 \Rightarrow {a^3\over 27}-1 \gt 0 \Rightarrow {a\over 3} \gt 1 \Rightarrow \bbox[red,2pt]{a\gt 3}

解答
(1)
\angle D'BP+ \angle CB'M=90^\circ = \angle CB'M+\angle B'MC \Rightarrow \angle D'BP = \angle B'MC\\ \Rightarrow \triangle CMB' \sim \triangle DB'P (AAA) ,因此令\cases{\overline{CM}=a \\ \overline{CB'}=b \\ \overline{B'M}=c=1-a} \Rightarrow \cases{\overline{B'D}=ka=1-b \Rightarrow k={1-b\over a}\\ \overline{DP}=kb\\ \overline{B'P}=kc} \\ \Rightarrow \triangle PB'D周長= k(a+b+c) = {1-b\over a}(a+b+1-a) =  {1-b^2\over a}= {1-(c^2-a^2)\over a}\\= {1-((1-a)^2-a^2)\over a}={2a\over a} =2,\bbox[red, 2pt]{故得證}(2)\triangle MB'C三邊長: \cases{\overline{MC} =a\\ \overline{MB'}=c=1-a\\ \overline{B'C}=b},由於\angle C=90^\circ \Rightarrow b^2= (1-a)^2-a^2 = 1-2a\\ \Rightarrow b=\sqrt{1-2a} \Rightarrow \triangle MB'C面積=f(a)={1\over 2}\times a\times \sqrt{1-2a}\\ 因此f'(a)=0 \Rightarrow \sqrt{1-2a} -{a\over \sqrt{1-2a}} =0 \Rightarrow {1-3a\over \sqrt{1-2a}}=0 \Rightarrow a={1\over 3}\\ \Rightarrow f({1\over 3})= {1\over 2}\times {1\over 3}\times \sqrt{1\over 3} =\bbox[red, 2pt]{\sqrt 3\over 18}
================ end ==================
解題僅供參考,其他教甄試題及詳解


沒有留言:

張貼留言