國立新竹女中 107 學年度代理教師甄選
一、填充題(每格 5 分,共 70 分)
解答:令g(x)=−x−k,則f(x)+x+k=0有二實根,相當f(x)=g(x)有兩交點;y=g(x)=−x−k為一直線,且斜率為−1;因此兩圖形{y=g(x)y=ex,x≤0僅在k≥−1時有一交點,而兩圖形{y=g(x)y=lnx,x>0一定有一交點,因此有二實根的條件,即k≥−1
解答:x4+2√3(log2k)x2+4−(log2k)2=0⇒x2=−2√3(log2k)±√12(log2k)2−16+4(log2k)22=−√3(log2k)±2√(log2k)2−1⇒{(log2k)2−1>0−√3(log2k)−2√(log2k)2−1>0⇒{(log2k)2>1−√3(log2k)>2√(log2k)2−1log2k<0⇒{log2k>1或log2k<−13(log2k)2>4(log2k)2−4⇒4>(log2k)2k<1⇒{log2k>1或log2k<−12>log2k>−2k<1⇒{1<log2k<2−2<log2k<−1k<1⇒1/4<k<1/2
解答:令an=¯AnAn+1=24−n,n∈Nx∞=8+a1√2−a2−a3√2+a4+a5√2−a6−a7√2+a8+⋯=8+(a4+a8+a12+⋯)+1√2(a1+a5+a9+⋯)−1√2(a3+a7+a11+⋯)−(a2+a6+a10+⋯)=8+(a41−1/16)+1√2(a11−1/16)−1√2(a31−1/16)−(a21−1/16)=8+1615+1√2⋅8⋅1615−1√2⋅2⋅1615−4⋅1615=8+165(√2−1)y∞=a1√2−a3√2+a5√2−a7√2+a9√2−⋯=1√2(a1+a5+a9+⋯)−1√2(a3+a7+a11+⋯)=1√2(a11−1/16)−1√2(a31−1/16)=1√2⋅8⋅1615−1√2⋅2⋅1615=16√25因此x∞+y∞=8+165(√2−1)+16√25=24+32√25
解答:令{午餐做飯的人是A、洗碗的是B晚餐做飯的人是C、洗碗的是D,則{A≠CB≠DA≠BC≠D因此A有7位人選A≠B→B有6位人員{B=C→C只有1種選擇D≠C→D有6種選擇B≠C→C有5種選擇D≠C,D≠B→D有5種選擇因此共有7×6×6+7×6×5×5=252+1050=1302種安排
解答:P(香蕉先分完)=P(香蕉比芭樂先分完)+P(香蕉比鳳梨先分完)−P(香蕉比其中之一先分完)=35+3+45+4−3+45+3+4=772
解答:令an=¯AnAn+1=24−n,n∈Nx∞=8+a1√2−a2−a3√2+a4+a5√2−a6−a7√2+a8+⋯=8+(a4+a8+a12+⋯)+1√2(a1+a5+a9+⋯)−1√2(a3+a7+a11+⋯)−(a2+a6+a10+⋯)=8+(a41−1/16)+1√2(a11−1/16)−1√2(a31−1/16)−(a21−1/16)=8+1615+1√2⋅8⋅1615−1√2⋅2⋅1615−4⋅1615=8+165(√2−1)y∞=a1√2−a3√2+a5√2−a7√2+a9√2−⋯=1√2(a1+a5+a9+⋯)−1√2(a3+a7+a11+⋯)=1√2(a11−1/16)−1√2(a31−1/16)=1√2⋅8⋅1615−1√2⋅2⋅1615=16√25因此x∞+y∞=8+165(√2−1)+16√25=24+32√25
解答:令{午餐做飯的人是A、洗碗的是B晚餐做飯的人是C、洗碗的是D,則{A≠CB≠DA≠BC≠D因此A有7位人選A≠B→B有6位人員{B=C→C只有1種選擇D≠C→D有6種選擇B≠C→C有5種選擇D≠C,D≠B→D有5種選擇因此共有7×6×6+7×6×5×5=252+1050=1302種安排
解答:P(香蕉先分完)=P(香蕉比芭樂先分完)+P(香蕉比鳳梨先分完)−P(香蕉比其中之一先分完)=35+3+45+4−3+45+3+4=772
延長→PC,使得→PD=2→PC;並令→PQ=→PA+→PD,則B為¯PQ中點,即符合題意要求,如上圖;因此{cos∠APQ=32+62−(3√6)22×3×6=−14⇒sin∠APQ=√154cos∠DPQ=62+(3√6)2−322×6×3√6=38√6⇒sin∠DPQ=√108⇒PABC面積=△PAB+△PBC=12(3×3×√154+3×√6×√108)=3√152
解答:正弦定理:3sinC=2×6=12⇒sinC=14⇒cosC=√154令△=|1cosAcosBcosA−1cosCcosBcosC−1|=1+2cosAcosBcosC+cos2A+cos2B−cos2C三角形三內角和=A+B+C=180∘⇒cosC=−cos(A+B)⇒cos2C=cos2(A+B)=(cosAcosB−sinAsinB)2=cos2Acos2B−2cosAcosBsinAsinB+(1−cos2A)(1−cos2B)=1+2cos2Acos2B−2cosAcosBsinAsinB−cos2A−cos2B=1+2cosAcosB(cosAcosB−sinAsinB)−cos2A−cos2B=1+2cosAcosBcos(A+B)−cos2A−cos2B⇒cos2A+cos2B=1+2cosAcosBcos(A+B)−cos2C⇒△=2+2cosAcosB(cosC+cos(A+B))−2cos2C=2+0−2cos2C=2−2×1516=18
解答:令{→u=(1,2,3)→v=(3,−1,2)及L與M夾角為θ⇒cosθ=→u⋅→v|→u||→v|=12⇒L與M夾角為60∘或120∘⇒→AB⋅→CD=|→AB||→CD|cosθ=6⋅5⋅(±12)=±15又A、C為垂足⇒{¯AC⊥¯AB¯AC⊥¯CD⇒{→AC⋅→AB=0→AC⋅→CD=0¯BD2=|→BD|2=(→BA+→AC+→CD)⋅(→BA+→AC+→CD)=|→BA|2+|→AC|2+|→CD|2+2(→BA⋅→AC+→AC⋅→CD+→CD⋅→BA)=62+42+52+2(0+0±15)=77±30=107或47⇒¯BD=√107或√47
解答:令{→u=(1,2,3)→v=(3,−1,2)及L與M夾角為θ⇒cosθ=→u⋅→v|→u||→v|=12⇒L與M夾角為60∘或120∘⇒→AB⋅→CD=|→AB||→CD|cosθ=6⋅5⋅(±12)=±15又A、C為垂足⇒{¯AC⊥¯AB¯AC⊥¯CD⇒{→AC⋅→AB=0→AC⋅→CD=0¯BD2=|→BD|2=(→BA+→AC+→CD)⋅(→BA+→AC+→CD)=|→BA|2+|→AC|2+|→CD|2+2(→BA⋅→AC+→AC⋅→CD+→CD⋅→BA)=62+42+52+2(0+0±15)=77±30=107或47⇒¯BD=√107或√47
解答:
{¯AB為直徑⇒∠APB=90∘¯AD為直徑⇒∠APD=90∘⇒B、P、D在一直線上;又{∠A=90∘¯AD=√3ׯAB⇒{∠ABD=60∘∠ADB=30∘令{E為¯AB中點F為¯AD中點,則{∠AEP=120∘∠AFP=60∘⇒{扇形EAP面積=(√62)2π×120∘360∘=12π扇形FAP面積=(3√22)2π×60∘360∘=34π又{△EAP面積=12ׯAPׯBP=14×32√2×12√6=38√3△APD面積=14ׯAPׯPD=12×32√2×32√6=98√3⇒欲求之舖色面積=(12π−34√3)+(34π−94√3)=54π−32√3
解答:
△ABD⇒{∠DAB=∠CAB−∠CAD=γ−α∠ABD=90∘+∠CBD=90∘+β⇒∠ADB=180∘−∠DAB−∠ABD=90∘+α−β−γ再利用正弦定理⇒¯AB¯AD=sin(90∘+α−β−γ)sin(90∘+β)=cos(α−β−γ)cosβ=cos(α−β−γ)8/17由於¯AD=¯AC,所以¯AB¯AD=¯AB¯AC=cosγ=cos(α−β−γ)8/17⇒817cosγ=cos(α−β−γ)=cos(α−β)cosγ+sin(α−β)sinγ=(cosαcosβ+sinαsinβ)cosγ+(sinαcosβ−sinβcosα)sinγ=(45⋅817+35⋅1517)cosγ+(35⋅817−1517⋅45)sinγ=7785cosγ−3685sinγ⇒3685sinγ=3785cosγ⇒tanγ=sinγcosγ=37/8536/85=3736
解答:令z=(x+y−|x−y|)÷2,則xyzxyz111411121422131433141444151454161464211511222522232533242544252555262565311611322622333633343644353655363666∑32∑59⇒期望值=32+5962=6136
解答:{tanα+tanβ=−(m+1)tanαtanβ=m+4有實根:(m+1)2−4(m+4)≥0⇒{tan(α+β)=−(m+1)1−(m+4)=m+1m+3(m−5)(m+3)≥0⇒m≥5或m≤−3⋯(1)∞∑n=1tann−1(α+β)收斂⇒|tan(α+β)|<1⇒|m+1m+3|<1⇒(m+1)2<(m+3)2⇒m>−2⋯(2);同時符合條件(1)及(2)⇒m≥5
解答:令g(x)=√x+b−a,則{g(2)=0lim
解答:區間[0,4]切成n段,每段長度為4/n \Rightarrow \cases{U_n={4\over n}(({4\over n})^3+({8\over n})^3+ \cdots +({4n\over n})^3) \\ L_n={4\over n}(0^3+({4\over n})^3+ \cdots +({4(n-1)\over n})^3) } \\ \Rightarrow U_n-L_n= {4\over n}\cdot 4^3= {256\over n} \lt 0.01 \Rightarrow n\gt 25600 \Rightarrow n=\bbox[red, 2pt]{25601}
解答:y=x^3+ax^2+x+1 \Rightarrow y'=3x^2+2ax+1\\ 令切點P(t,t^3+at^2+t+1),則斜率為3t^2+2at+1\\,過P之切線L: y=(3t^2+2at+1)(x-t)+t^3+at^2+t+1\\又L過(0,0) \Rightarrow -3t^3-2at^2-t+t^3+at^2+t+1=0 \Rightarrow f(t)=2t^3+at^2-1=0 有三相異根\\ \Rightarrow f'(t)=6t^2+2at=0 \Rightarrow 2t(3t+a)=0 \Rightarrow t=0,-a/3有極值 \Rightarrow f(0)f(-a/3)\lt 0\\ \Rightarrow -1(-2a^3/27+a^3/9-1)\lt 0 \Rightarrow {a^3\over 27}-1 \gt 0 \Rightarrow {a\over 3} \gt 1 \Rightarrow \bbox[red,2pt]{a\gt 3}
解答:
解答:{tanα+tanβ=−(m+1)tanαtanβ=m+4有實根:(m+1)2−4(m+4)≥0⇒{tan(α+β)=−(m+1)1−(m+4)=m+1m+3(m−5)(m+3)≥0⇒m≥5或m≤−3⋯(1)∞∑n=1tann−1(α+β)收斂⇒|tan(α+β)|<1⇒|m+1m+3|<1⇒(m+1)2<(m+3)2⇒m>−2⋯(2);同時符合條件(1)及(2)⇒m≥5
解答:令g(x)=√x+b−a,則{g(2)=0lim
二、計算或證明題(每題 10 分,共 30 分,須有計算或證明過程)
解答:(2n-1)(2n+1)=4n^2-1 \lt 4n^2 \Rightarrow (2n-1)(2n+1) \lt (2n)^2\\ 令S=1\times 3\times 5\times \cdots (2n-1) \\\Rightarrow (2n+1)S^2 = 1^2\times 3^2 \times 5^2\times \cdots \times (2n-1)^2(2n+1)\\ =(1\times 3)(3\times 5)(5\times 7)\cdots ((2n-3)(2n-1))((2n-1)(2n+1)) \\ \lt 2^2\times 4^2 \times 6^2\times \cdots \times (2n)^2 \\ \Rightarrow (2n+1)S^2 \lt 2^2\times 4^2 \times 6^2\times \cdots \times (2n)^2 \Rightarrow \sqrt{2n+1}S \lt 2\times 4\times 6\times \cdots \times (2n) \\ \Rightarrow 0\lt {S\over 2\times 4\times 6\times \cdots \times (2n)} \lt {1\over \sqrt{2n+1}} \equiv 0\lt a_n \lt {1\over \sqrt{2n+1}} \\ \Rightarrow 0\lt \lim_{n\to \infty} a_n \lt \lim_{n\to \infty}{1\over \sqrt{2n+1}}=0 \Rightarrow \lim_{n\to \infty} a_n =\bbox[red, 2pt]{0}解答:y=x^3+ax^2+x+1 \Rightarrow y'=3x^2+2ax+1\\ 令切點P(t,t^3+at^2+t+1),則斜率為3t^2+2at+1\\,過P之切線L: y=(3t^2+2at+1)(x-t)+t^3+at^2+t+1\\又L過(0,0) \Rightarrow -3t^3-2at^2-t+t^3+at^2+t+1=0 \Rightarrow f(t)=2t^3+at^2-1=0 有三相異根\\ \Rightarrow f'(t)=6t^2+2at=0 \Rightarrow 2t(3t+a)=0 \Rightarrow t=0,-a/3有極值 \Rightarrow f(0)f(-a/3)\lt 0\\ \Rightarrow -1(-2a^3/27+a^3/9-1)\lt 0 \Rightarrow {a^3\over 27}-1 \gt 0 \Rightarrow {a\over 3} \gt 1 \Rightarrow \bbox[red,2pt]{a\gt 3}
解答:
(1)
\angle D'BP+ \angle CB'M=90^\circ = \angle CB'M+\angle B'MC \Rightarrow \angle D'BP = \angle B'MC\\ \Rightarrow \triangle CMB' \sim \triangle DB'P (AAA) ,因此令\cases{\overline{CM}=a \\ \overline{CB'}=b \\ \overline{B'M}=c=1-a} \Rightarrow \cases{\overline{B'D}=ka=1-b \Rightarrow k={1-b\over a}\\ \overline{DP}=kb\\ \overline{B'P}=kc} \\ \Rightarrow \triangle PB'D周長= k(a+b+c) = {1-b\over a}(a+b+1-a) = {1-b^2\over a}= {1-(c^2-a^2)\over a}\\= {1-((1-a)^2-a^2)\over a}={2a\over a} =2,\bbox[red, 2pt]{故得證}(2)\triangle MB'C三邊長: \cases{\overline{MC} =a\\ \overline{MB'}=c=1-a\\ \overline{B'C}=b},由於\angle C=90^\circ \Rightarrow b^2= (1-a)^2-a^2 = 1-2a\\ \Rightarrow b=\sqrt{1-2a} \Rightarrow \triangle MB'C面積=f(a)={1\over 2}\times a\times \sqrt{1-2a}\\ 因此f'(a)=0 \Rightarrow \sqrt{1-2a} -{a\over \sqrt{1-2a}} =0 \Rightarrow {1-3a\over \sqrt{1-2a}}=0 \Rightarrow a={1\over 3}\\ \Rightarrow f({1\over 3})= {1\over 2}\times {1\over 3}\times \sqrt{1\over 3} =\bbox[red, 2pt]{\sqrt 3\over 18}
================ end ==================
沒有留言:
張貼留言