網頁

2021年11月1日 星期一

110年調查人員特考-工程數學詳解

 110年公務人員特種考試法務部調查局調查人員考試

考 試 別: 調查人員
等 別: 三等考試
類 科 組: 電子科學組
科 目: 工程數學

解答
(一)$$\det(A)=\begin{vmatrix} 2 & -1 &3\\ 1  & 9 &-2 \\4 & -8 & 11\end{vmatrix} = 198-24+8-108+11-32=\bbox[red,2pt]{53}$$(二)$$A^{-1}={1\over \det(A)}\begin{vmatrix}\begin{vmatrix}9 & -2\\-8 & 11 \end{vmatrix}  & -\begin{vmatrix}-1 & 3\\-8 & 11 \end{vmatrix} & \begin{vmatrix}-1 & 3\\9 & -2 \end{vmatrix}\\ -\begin{vmatrix}1 & -2\\4 & 11 \end{vmatrix}  & \begin{vmatrix}2 & 3\\4 & 11 \end{vmatrix} &-\begin{vmatrix}2 & 3\\1 & -2 \end{vmatrix} \\\begin{vmatrix}1 & 9\\4 & -8 \end{vmatrix} & -\begin{vmatrix}2 & -1\\4 & -8 \end{vmatrix} & \begin{vmatrix}2 & -1\\1 & 9 \end{vmatrix}\end{vmatrix} \\= {1\over 53}\begin{vmatrix}83 & -13 & -25\\-19 & 10 &7 \\-44 &12 & 19\end{vmatrix} \Rightarrow A^{-1}=\bbox[red,2pt]{\begin{vmatrix}83/53 & -13/53 & -25/53\\-19/53 & 10/53 &7/53 \\-44/53 &12/53 & 19/53\end{vmatrix} }$$(三)$$\cases{2x_1-x_2+3x_3=4\\ x_1+9x_2-2x_3=-8\\ 4x_1-8x_2+11x_3 = 15} \equiv A\begin{bmatrix} x_1\\ x_2\\ x_3\end{bmatrix} = \begin{bmatrix} 4\\ -8\\ 15\end{bmatrix}  \\\Rightarrow \begin{bmatrix} x_1\\ x_2\\ x_3\end{bmatrix}=A^{-1} \begin{bmatrix} 4\\ -8\\ 15\end{bmatrix}= \begin{bmatrix}83/53 & -13/53 & -25/53\\-19/53 & 10/53 &7/53 \\-44/53 &12/53 & 19/53\end{bmatrix} \begin{bmatrix} 4\\ -8\\ 15\end{bmatrix} =\begin{bmatrix} 61/53\\ -51/53\\ 13/53\end{bmatrix}\\ \Rightarrow (x_1,x_2,x_3)=\bbox[red, 2pt]{\left({61\over 53},-{51\over 53},{13\over 54}\right)}$$


解答:$$A=\begin{bmatrix} \sqrt 3/3 & -1/3\\ 1/3 & \sqrt 3/3\end{bmatrix} ={2\over 3}\begin{bmatrix} \sqrt 3/2 & -1/2\\ 1/2 & \sqrt 3/2\end{bmatrix}={2\over 3}\begin{bmatrix} \cos (\pi/6) & -\sin(\pi/6)\\ \sin(\pi/6) & \cos(\pi/6) \end{bmatrix}\\ \Rightarrow A^{14}={2^{14}\over 3^{14}} \begin{bmatrix} \cos (14\pi/6) & -\sin(14\pi/6)\\ \sin(14\pi/6) & \cos(14\pi/6) \end{bmatrix} ={2^{14}\over 3^{14}} \begin{bmatrix} \cos (\pi/3) & -\sin(\pi/3)\\ \sin(\pi/3) & \cos(\pi/3) \end{bmatrix} \\ ={2^{14}\over 3^{14}} \begin{bmatrix} 1/2 & -\sqrt 3/2\\ \sqrt 3/2 & 1/2 \end{bmatrix} = \bbox[red,2pt]{\begin{bmatrix} 2^{13}/3^{14} & -2^{13}\sqrt 3/3^{14}\\ 2^{13}\sqrt 3/3^{14} & 2^{13}/3^{14} \end{bmatrix} }$$
解答:$$y''+9y=\sin(2t)+\delta(t-1) \Rightarrow \mathcal{L}\{ y''\}+9\mathcal{L}\{y \}=\mathcal{L}\{ \sin(2t)\} +\mathcal{L}\{\delta(t-1) \} \\ \Rightarrow s^2Y(s)-sy(0)-y'(0)+9Y(s)= {2\over s^2+4}+e^{-s} \Rightarrow (s^2+9)Y(s)={2\over s^2+4}+ e^{-s}+1 \\ \Rightarrow Y(s)={2\over (s^2+4)(s^2+9)} +{1\over s^2+9}e^{-s}+{1\over s^2+9} \\= {2\over 5}\left({1\over  s^2+4}-{1\over  s^2+9}\right) +{1\over s^2+9}e^{-s}+{1\over s^2+9}\\ ={2\over 5}\cdot {1\over s^2+4}+ {3\over 5}\cdot {1\over s^2+9} +{1\over s^2+9}e^{-s}\\ \Rightarrow y={2\over 5}\mathcal{L}^{-1}\{ {1\over  s^2+4}\} +{3\over 5} \mathcal{L}^{-1} \{ {1\over  s^2+9}\} +\mathcal{L}^{-1}\{ {1\over s^2+9}e^{-s} \} \\={1\over 5}\sin(2t) +{1\over 5}\sin(3t)+{1\over 3}u(t-1)\sin(3t-3) \\ \Rightarrow \bbox[red,2pt]{y(t)={1\over 5}(\sin(2t)+\sin(3t)) +{1\over 3}u(t-1)\sin(3t-3)}$$
解答
(一)$$F(s)=\int_0^\infty f(t)e^{-st}\;dt= \int_0^\infty (t+1)e^{-st}\;dt= \left.\left[ -{1\over s}te^{-st} -{1\over s^2}e^{-st} -{1\over s}e^{-st}\right]\right|_0^\infty \\ =0-(-{1\over s^2}-{1\over s}) = \bbox[red,2pt]{s+1\over s^2}$$(二)$$G(s)=\int_0^\infty g(t)e^{-st}\;dt= \int_0^5 te^{-st}\;dt= \left.\left[ -{1\over s}te^{-st} -{1\over s^2}e^{-st}  \right]\right|_0^5 \\=\left( -{5\over s}e^{-5s}-{1\over s^2}e^{-5s}\right)- \left( -{1\over s^2}\right)= \bbox[red,2pt]{{1\over s^2}-\left({5\over s} +{1\over s^2}\right)e^{-5s}}$$
解答:$$令f(z)={e^z\over (z+i)(z+2i)^3}  \Rightarrow \cases{Res(f,-i) =\left . {e^z\over (z+2i)^3}\right|_{z=-i}=ie^{-i}\\ Res(f,-2i) =\left. {1\over 2}\left( {2\over (z+i)^3}-{2\over (z+i)^2}+{1\over z+i}\right)e^z\right|_{z=-2i}={2-i\over 2 }e^{-2i}} \\ \Rightarrow \oint_C f(z)\;dz = 2\pi i(Res(f,-i)+Res(f,-2i))=2\pi i\left(ie^{-i}+{2-i\over 2}e^{-2i}\right) \\ = \bbox[red,2pt]{-2\pi e^{-i}+(2 i+1)\pi e^{-2i}}$$

解答

(一)$$E[X]=\int_{-\infty}^\infty x\cdot f_X(x)\;dx =\int_{0}^\infty x\cdot 2e^{-2x}\;dx =\left.\left[-xe^{-2x}-{1\over 2}e^{-2x} \right]\right|_0^\infty =0-(-{1\over 2})= \bbox[red,2pt]{1\over 2}$$(二)$$E[X^2]=\int_{-\infty}^\infty x^2\cdot f_X(x)\;dx =\int_{0}^\infty x^2\cdot 2e^{-2x}\;dx =\left.\left[-x^2e^{-2x}-xe^{-2x}-{1\over 2}e^{-2x} \right]\right|_0^\infty\\ =0-(-{1\over 2})= \bbox[red,2pt]{1\over 2}$$(三)$$F_Y(y)=P(Y\le y) = P((2X+1)^2\le y) =P \left({-\sqrt y-1\over 2} \le X\le {\sqrt y-1\over 2}\right) \\=F_X\left({\sqrt y-1\over 2} \right)-F_X\left({-\sqrt y-1\over 2} \right)\\ \Rightarrow f_Y(y)= {1\over 4\sqrt y}f_X\left({\sqrt y-1\over 2} \right)+{1\over 4\sqrt y}f_X\left({-\sqrt y-1\over 2} \right) ={1\over 4\sqrt y}\left( 2e^{-\sqrt y+1}+ 2e^{\sqrt y+1}\right) \\ \Rightarrow \bbox[red,2pt]{f_Y(y)= \cases{{1\over 2\sqrt y}\left(e^{1-\sqrt y}+ e^{1+\sqrt y} \right),y\gt 0\\0,其它}}$$

=============== end =========================

解題僅供參考,其他工程數學試題及詳解

2 則留言:

  1. 請問第6題倒數第二行1/4√y怎來的

    回覆刪除