網頁

2022年2月11日 星期五

104年身障生升大學-數學甲詳解

104 學年度身心障礙學生升學大專校院甄試
甄試類(群)組別:大學組數學甲

單選題,共 20 題,每題 5 分

解答
$$r\theta_1:r\theta_2 = 5:1 \Rightarrow \theta_1:\theta_2= 5:1 \Rightarrow \theta_2 = \angle BAC = {1\over 6}\times 360^\circ = 60^\circ \\ \Rightarrow 圓心至弦距離=\overline{AD} =r\cos (\theta_2/2) =8\cdot \cos 30^\circ = 4\sqrt 3,故選\bbox[red,2pt]{(B)}$$
解答:$$\cases{O(0,0)\\ A(2,3)\\ P(x,y)} \Rightarrow \cases{\overrightarrow{OA} =(2,3)\\ \overrightarrow{OP}=(x,y)},因此\overrightarrow{OP} \cdot \overrightarrow{OA}=5 \Rightarrow 2x+3y=5 \Rightarrow 斜率m=-2/3 \\ \Rightarrow -1\le m\lt 0,故選\bbox[red,2pt]{(B)}$$
解答:$$\begin{bmatrix} a & b & c\\ d& e & f\end{bmatrix}\begin{bmatrix}1 & 4\\ 2 & 5\\ 3 & 6 \end{bmatrix} =\begin{bmatrix} 1 & 2 \\ -1 & 2\end{bmatrix} \Rightarrow \cases{a+2b+3c = 1 \cdots(1)\\ 4a+5b+6c=2 \cdots(2)\\ d+2e+ 3f=-1 \cdots(3)\\ 4d+ 5e+ 6f= 2 \cdots(4)}\\ 因此\cases{(2)-(1) \Rightarrow 3a+3b+3c=1\\ (4)-(3)\Rightarrow 3d+3e+3f=3} \Rightarrow \cases{a+b+c=1/3 \cdots(5)\\ d+e+f=1 \cdots(6)} \\最後 (5)+(6)\Rightarrow a+b+c+d+e+f =1/3+1 =4/3,故選\bbox[red,2pt]{(D)}$$
解答:$$\cases{f(x)=(x^2-2x+1)p(x)+ x+2 =(x-1)^2p(x)+x+2\\ g(x)=(x^2-2x+1)q(x)+x+3 =(x-1)^2q(x)+x+3} \\ \Rightarrow f(x)g(x)= (x-1)^4p(x)q(x)+ (x-1)^2((x+2)q(x)+ (x+3)p(x))+ (x+2)(x+3) \\ \Rightarrow f(1)g(1)= 3\cdot 4=12,故選\bbox[red,2pt]{(A)}$$
解答
$$\cases{y=x^2=\sqrt 3x \Rightarrow x=0,\sqrt 3\\ y=x^2= 2\sqrt 3 x \Rightarrow x=0, 2\sqrt 3} \Rightarrow \cases{P(\sqrt 3, 3)\\ Q(2\sqrt 3, 12)\\ O(0,0)} \Rightarrow \cases{\overline{OQ}= 2\sqrt {39}\\ d(P,y=2\sqrt 3x) = 3/\sqrt{13}} \\ \Rightarrow \triangle OPQ = {1\over 2}\cdot 2\sqrt {39} \cdot {3\over \sqrt{13}} =3\sqrt 3,故選\bbox[red,2pt]{(A)}$$
解答:$$\cases{\cases{27^2 =729\\ 28^2=784} \Rightarrow 27 \lt \sqrt{777}\lt 28 \\[1ex] \cases{9^3=729 \\ 10^3=1000} \Rightarrow 9\lt \sqrt[3]{777}\lt 10} \Rightarrow |k| =10,11,\dots,27 \Rightarrow k=\pm 10,\pm 11,\dots,\pm 27\\,共36個,故選\bbox[red,2pt]{(D)}$$
解答
$$令\cases{塔高h=\overline{AB}\\ a=\overline{AD}},則\cases{\tan \theta_1=h/(a+100)= 0.3\\ \tan \theta_2=h/a= 0.4} \Rightarrow h=0.3(a+100)= 0.4a \Rightarrow 0.1a=30\\ \Rightarrow a=300 \Rightarrow h=0.4a =120,故選\bbox[red,2pt]{(D)}$$
解答:$$ 假設邊長為7的對應角為\theta \Rightarrow \cos \theta ={5^2+6^2 -7^2\over 2\cdot 5\cdot 6} ={1\over 5} \Rightarrow \sin \theta ={2\sqrt 6\over 5}\\ 正弦定理:2R= {7\over \sin \theta} = {35 \over 2\sqrt 6} ={35\over 2\cdot 1.414\cdot 1.732} \approx 7.15,故選\bbox[red,2pt]{(C)}$$
解答:$$ 令\cases{\vec u=(1,1,1)\\ \vec v=(2,3,4)} \Rightarrow a\vec u+b\vec v= (a+2b,a+3b,a+4b)\\ (A) 取\cases{a=0\\b=0} \Rightarrow a\vec u+b\vec v=(0,0,0)\\ (B) 取\cases{a=5\\b=1} \Rightarrow a\vec u+b\vec v=(7,8,9)\\ (C)若a\vec u+b\vec v=(8, 7, 9) \Rightarrow \cases{a+2b=8\cdots(1)\\ a+3b=7 \cdots(2)\\ a+4b=9 \cdots(3)} \Rightarrow \cases{由(1)及(2) \Rightarrow \cases{a=10\\b=-1} \\ 由(2)及(3)\Rightarrow \cases{a=1\\b=2}} \Rightarrow 無解\\ (D) 取\cases{a=11\\b= -1} \Rightarrow a\vec u+b\vec v=(9,8,7)\\ ,故選\bbox[red,2pt]{(C)}$$
解答:$$令圓心O(1,2),則\cases{d_1=d(O,L_1)= 13/5\\ d_2=d(O,L_2) = 8/5\\ d_3=d(O,L_3)= 42/13} \Rightarrow d_3\gt d_1\gt d_2 \Rightarrow d_1\lt r \lt d_3\\,也就是13/5\le r\lt 42/13,則圓交L_1,L_2,但不與L_3相交,故選\bbox[red,2pt]{(C)}$$
解答:$$(1-1\%)(1+0\%)(1+c\%)\gt (1+10\%)^3  \Rightarrow 0.99(1+c\%)\gt 1.1^3\\ \Rightarrow 1+c\% \gt 1.1^3/0.99 = 1.344 \Rightarrow c\gt 34,故選\bbox[red,2pt]{(C)}$$
解答:$$x^2+x=1.23\times 10^{18} \Rightarrow x^2+x-1.23\times 10^{18}=0 \Rightarrow a={-1+\sqrt{1+4\times 1.23\times 10^{18}}\over 2}\\ ={-1+\sqrt{1+4 .92\times 10^{18}}\over 2}   \approx {-1+\sqrt{ 4 .92\times 10^{18}}\over 2} \approx {-1+2.2\times 10^9\over 2} \\=1.1\times 10^9-0.5 \Rightarrow 10^9\le a\lt 5\times 10^{9},故選\bbox[red,2pt]{(B)}$$
解答:$$\cases{A=L_1\cap L_2 =(0,8)\\ B=L_2\cap L_3 =(8,10)\\ C=L_3\cap L_1=(4,0)} \Rightarrow \cases{P\in \overline{AB} \Rightarrow P=(4t,t+8), t\in(0,2)\\ Q\in \overline{BC} \Rightarrow Q=(2t+4,5t),t\in (0,2)\\ R\in \overline{AC} \Rightarrow R= (t+4,-2t), t\in(-4,0)} \\ \Rightarrow \cases{t=1時,P在格子點上\\ t=1時,Q在格子點上\\ t=-3,-2,-1時,R在格子點上} \\\Rightarrow 有五個格子點,再加A、B、C三端點,共8個格子點,故選\bbox[red,2pt]{(A)}$$
解答:$$\cases{p+0.8q+ 0.6r=820\\ 0.8p+0.6q+r=770\\ 0.6p+q+ 0.8r=810} \Rightarrow\left[\begin{matrix}1 & \frac{4}{5} & \frac{3}{5} & 820\\\frac{4}{5} & \frac{3}{5} & 1 & 770\\\frac{3}{5} & 1 & \frac{4}{5} & 810\end{matrix}\right] \Rightarrow \left[\begin{matrix}1 & 0 & 0 & 350\\0 & 1 & 0 & 400\\0 & 0 & 1 & 250\end{matrix}\right] \Rightarrow \cases{p=350\\ q=400\\ r=250}\\ \Rightarrow q\gt p\gt r,故選\bbox[red,2pt]{(C)}$$
解答:$$\cot x\gt 0 \Rightarrow k\pi \lt x\lt {2k+1\over 2}\pi ,k\in \mathbb{Z}\\ \cases{0\lt 1,\sqrt 2\lt \pi/2\\ \pi/2\lt \sqrt 3,\sqrt 4,\dots ,\sqrt 9\lt \pi \\ \pi \lt \sqrt{10}\lt 3\pi/2} \Rightarrow \cases{\cot 1,\cot \sqrt 2,\cot \sqrt{10} 三數為正值\\ 其餘皆為負值},故選\bbox[red,2pt]{(B)}$$
解答:$$\cases{P(A) =0.28\\ P(B)=0.4 }及P(A\mid B)=0.4 \Rightarrow {P(A\cap B)\over P(B)} =0.4 \Rightarrow P(A\cap B)=0.4\times 0.4= 0.16 \\ \Rightarrow P(A\mid B') = {P(A\cap B')\over P(B')} ={P(A)-P(A\cap B)\over 1-P(B)} ={0.28-0.16\over 1-0.4} = 0.2,故選\bbox[red,2pt]{(A)}$$
解答:$$ P(X=4)=1/6 \Rightarrow 期望值=4/6\\ P(X=5)=1/6 \Rightarrow 期望值=5/6\\P(X=6)=1/6 \Rightarrow 期望值=6/6 \\P(X=1)=1/6 再投一次\cases{P(X=1) \Rightarrow 期望值=(1+1)/36\\ P(X=2) \Rightarrow 期望值=(1+2)/36\\\cdots\\ P(X=6) \Rightarrow 期望值=(1+6)/36 }\\\qquad \Rightarrow 期望值=(2+3+\cdots 7)/36=27/36  \\ P(X=2)=1/6 再投一次\cases{P(X=1) \Rightarrow 期望值=(2+1)/36\\ P(X=2) \Rightarrow 期望值=(2+2)/36\\\cdots\\ P(X=6) \Rightarrow 期望值=(2+6)/36 }\\\qquad \Rightarrow 期望值=( 3+ 4+\cdots 8)/36=33/36 \\ P(X=3)=1/6 再投一次\cases{P(X=1) \Rightarrow 期望值=(3+1)/36\\ P(X=2) \Rightarrow 期望值=(3+2)/36\\\cdots\\ P(X=6) \Rightarrow 期望值=(3+6)/36 }\\\qquad \Rightarrow 期望值=(   4+5 +\cdots 9)/36=39/36\\ \Rightarrow 總期望值= (4+5+6)/6+ (27+33+39)/36 =189/36= 21/4,故選\bbox[red,2pt]{(D)}$$
解答:$$(A) 20\le x\lt 30 \Rightarrow \cases{4\lt \log_2 x\lt 5 \\ 2\le x/10\lt 3} \Rightarrow 無交集\\ (B)30\le x\lt 40\Rightarrow \cases{5\le \log_2 x\lt 6 \\ 3\le x/10\lt 4} \Rightarrow 無交集\\(C) 40\le x\lt 50 \Rightarrow \cases{5\lt \log_2 x\lt 6 \\ 4\le x/10\lt 5} \Rightarrow  無交集 \\(D) 50\le x\lt 60 \Rightarrow \cases{5\le \log_2 x\lt 6 \\ 5\le x/10\lt 6} \Rightarrow 有交集\\,故選\bbox[red,2pt]{(D)}$$
解答:$$P(X_6=2)= (C^6_2+ C^6_4)/2^6 = 30/64,故選\bbox[red,2pt]{(D)}$$
解答

$$z=\sqrt 3+i = 2(\cos {\pi\over 6} +i\sin {\pi\over 6}) \Rightarrow z^n= 2^n(\cos {n\pi\over 6} +i\sin {n\pi\over 6}), n\in \mathbb{N} \\令 \cases{P_n=(2^n\cos{n\pi\over 6}, 2^n\sin{n\pi \over 6})\\ 圓心 O(1,1) \\d_n= \overline{OP_n}}  \Rightarrow \cases{P_1(\sqrt 3,1)\\ P_2(2,2\sqrt 3)\\ P_3(0,8)\\ P_4(-8,8\sqrt 3)} \Rightarrow \cases{d_1=  \sqrt{4-2\sqrt 3} \lt 9\\ d_2 = \sqrt{14-4\sqrt 3} \lt 9 \\ d_3=\sqrt{50} \lt 9\\ d_4= \sqrt{9^2+(8\sqrt 3-1)^2}\gt 9} \\\Rightarrow 有3個點在內部,故選\bbox[red,2pt]{(C)}$$
========================== END =========================

解題僅供參考,其他歷屆試題及詳解

1 則留言: