臺灣綜合大學系統111學年度學士班轉學生聯合招生考試
科目:工程數學
類組代碼:D04
解答:{f1(x)=ex⇒{f1(−x)=e−x−f1(x)=−ex⇒{f1(−x)≠f1(x)f1(−x)≠−f1(x)⇒ex不是偶函數也不是奇函數f2(x)=ex2⇒{f2(−x)=ex2−f2(x)=−ex2⇒f2(x)=f2(−x)⇒ex2為偶函數f3(x)=tanx⇒{f3(−x)=−tanx−f3(x)=−tanx⇒f3(−x)=−f3(x)⇒tanx為奇函數f4(x)=sinhx⇒{f4(−x)=−sinhx−f4(x)=−sinhx⇒f4(−x)=−f4(x)⇒sinhx為奇函數⇒{ex不是偶函數也不是奇函數ex2為偶函數tanx為奇函數sinhx為奇函數解答:{f=x+y−z⇒{fx=1fy=1fz=−1g=xyz⇒{gx=yzgy=xzgz=xy⇒{∂∂xfg=fxg+fgx=xyz+(x+y−z)yz∂∂yfg=fyg+fgy=xyz+(x+y−z)xz∂∂zfg=fzg+fgz=−xyz+(x+y−z)xy⇒grad(fg)=(∂∂xfg,∂∂yfg,∂∂zfg)=(yz(2x+y−z),xz(x+2y−z),xy(x+y−2z))⇒div(grad(fg))=∂∂xyz(2x+y−z)+∂∂yxz(x+2y−z)+∂∂zxy(x+y−2z)=2yz+2xz−2xy=2(yz+xz−xy)
解答:A=(−1−10−1−10002)⇒det(A−λI)=0⇒−λ(λ−2)(λ+2)=0⇒{λ1=0λ2=2λ3=−2λ1=0⇒(A−λ1I)x=0⇒(−1−10−1−10002)(x1x2x3)=0⇒{x1=−x2x3=0,取v1=(−110)λ2=2⇒(A−λ2I)x=0⇒(−3−10−1−30000)(x1x2x3)=0⇒{x1=0x2=0,取v2=(001)λ3=−2⇒(A−λ3I)x=0⇒(1−10−110004)(x1x2x3)=0⇒{x1=x2x3=0,取v3=(110)取P=(v1v2v3)及D=(λ1000λ2000λ3)⇒A=PDP−1因此eigenbasis={(−110),(001),(110)},對角化A=(−101101010)(00002000−2)(−1212000112120)
解答:{y′1−2y1+3y2=0y′2−y1+2y2=0⇒{L{y′1−2y1+3y2}=0L{y′2−y1+2y2}=0⇒{sY1(s)−y1(0)−2Y1(s)+3Y2(s)=0sY2(s)−y2(0)−Y1(s)+2Y2(s)=0⇒{(s−2)Y1(s)+3Y2(s)=1⋯(1)−Y1(s)+(s+2)Y2(s)=0⋯(2),由(2)得Y1(s)=(s+2)Y2(s)代入(1)⇒(s2−4)Y2(s)+3Y2(s)=1⇒Y1(s)=1s2−1⇒y1(t)=L−1{1s2−1}=12(et−e−t)再將Y1(s)=1s2−1代入(2)⇒Y2(s)=1(s+2)(s2−1)⇒y2(t)=L−1{1(s+2)(s2−1)}=13e−2t−12e−t+16et⇒y1(t)=12(et−e−t),y2(t)=13e−2t−12e−t+16et
解答:y=a0+a1x+a2x2+a3x3+a4x4+⋯⇒y′=a1+2a2x+3a3x2+4a4x3+⋯⇒3xy′=3a1x+6a2x2+9a3x3+12a4x4+⋯⇒(3x−1)y′=−a1+(3a1−2a2)x+(6a2−3a3)x2+(9a3−4a4)x3+⋯⇒y″=2a2+6a3x+12a4x2+20a5x3+⋯⇒x(x−1)y″=−2a2x+(2a2−6a3)x2+(6a3−12a4)x3+(12a4−20a5)x4+⋯⇒x(x−1)y″+(3x−1)y′+y=(a0−a1)+(4a1−4a2)x+(9a2−9a3)x2+(16a3−16a4)x3+⋯=0⇒y=C(1+x+x2+⋯)=C11−x由於原微分方程為二階,因有另一解設為y2=C21−xP(x)⇒y′2=C21−xP′+C2(1−x)2P⇒y″2=C21−xP″+2C2(1−x)2P′+2C2(1−x)3P將y2,y′2及y″2代回原式⇒xP″+P′=0⇒P=lnx⇒y=C11−x+C21−xlnx
解答:(a)令{M(x,y)=ex+y+yeyN(x,y)=xey−1,則(ex+y+yey)dx+(xey−1)dy=0相當於Mdx+Ndy=0由於{My=ex+y+ey+yeyNx=ey⇒My≠Nx⇒非恰當(NotExact)令積分因子μ(y)⇒{∂∂yMμ=Myμ+Mμy=(ex+y+ey+yey)μ+(ex+y+yey)μy∂∂xNμ=Nxμ=eyμ⇒(ex+y+ey+yey)μ+(ex+y+yey)μy=eyμ⇒μ+μy=0⇒μ=e−y⇒{Mμ=ex+yNμ=x−e−y⇒Ψ(x,y)=∫(ex+y)dx=∫x−e−ydy⇒Ψ=ex+xy+ϕ(y)=xy+e−y+φ(x)⇒Ψ=ex+xy+e−y=C,再將初始值y(0)=−3代入⇒1+e3=C⇒ex+xy+e−y=1+e3
解答:limn→∞|an+1an|=limn→∞|x2n+3(2n+3)!⋅(2n+1)!x2n+1|=x2limn→∞1(2n+3)(2n+2)=0⇒收斂半徑=∞
========================== END ============================
解題僅供參考,其他轉學考試題及詳解
沒有留言:
張貼留言