臺灣綜合大學系統107學年度學士班轉學生聯合招生考試
科目名稱:工程數學
類組代碼:D36
解答:ex≈∞∑n=01n!xn=1+x+12x2+13!x3+⋯+1n!xn+⋯⇒e−x≈1−x+12x2−13!x3+⋯+1n!(−1)nxn+⋯⇒∫101−exxdx≈∫101−12x+13!x2−⋯+1n!(−1)n−1xn−1+⋯dx=[x−14x2+118x3−196x4+1600x5−⋯]|10≈1−14+118−196+1600≈0.797
解答:取u=1y⇒u′=−1y2y′=−u2y′⇒y′=−1u2u′代回原式⇒−xu2u′−3u+x4u2=0⇒xu′+3u=x4⇒u′+3xu=x3⇒積分因子I(x)=e∫(3/x)dx=x3⇒x3u′+3x2u=x6⇒(x3u)′=x6⇒x3u=∫x6dx=17x7+C⇒x3y=17x7+C將y(1)=1代入上式⇒1=17+C⇒C=67⇒y=7x3x7+6


解答:u(x,t)=X(x)T(t) \Rightarrow u_{xx}-3u_t= X''T-3XT'=0 \Rightarrow {X''\over X}=3{T'\over T} =k,k為常數 \\ \Rightarrow X''-kX=0,以下就k值分別討論:\\\text{Case I: } k=0\Rightarrow X''=0 \Rightarrow X=C_1x+ C_2,由於u(0,t)= u(2,t)=0,即X(0)=X(2)=0\\ \qquad \Rightarrow \cases{C_2=0\\ 2C_1+C_2=0} \Rightarrow X=0為明顯解,不討論\\ \text{Cases II: }k\gt 0 \Rightarrow X''-kX=0 \Rightarrow X=C_1e^{\sqrt k x} +C_2e^{-\sqrt kx} \Rightarrow \cases{X(0)= C_1+C_2 = 0\\ X(2)= C_1e^{2\sqrt k} +C_2e^{-2\sqrt k}=0} \\ \qquad \Rightarrow \cases{C_2=-C_1 \\ C_1e^ {4\sqrt k}+C_2=0} \Rightarrow C_1e^{4\sqrt k}-C_1=0 \Rightarrow C_1(e^{4\sqrt k}-1)=0 \Rightarrow C_1=0(k\gt 0 \Rightarrow e^{4\sqrt k}\ne 1) \\\qquad \Rightarrow C_1=C_2=0 \Rightarrow X=0為明顯解,不討論\\ \text{Cases III:}k\lt 0 \Rightarrow k=-t^2,t\ne 0,t\in\mathbb{R} \Rightarrow X''+t^2X=0 \Rightarrow X= C_1\cos tx +C_2\sin tx \\ \qquad \Rightarrow \cases{X(0)= 0 =C_1\\ X(2)=0 = C_1\cos 2t+ C_2\sin 2t} \\\qquad \Rightarrow C_2\sin 2t=0 \Rightarrow \cases{C_2=0 \Rightarrow C_1=C_2=0 \Rightarrow X=0為明顯解\\ 2t=m\pi,m\in \mathbb{Z}\Rightarrow t=m\pi/2} \\ \qquad \Rightarrow X=C_2\sin{m\pi x\over 2} ;又t=m\pi/2 \Rightarrow k=-m^2\pi^2/4 \Rightarrow T'-{k\over 3}T=0 \\ \qquad\Rightarrow T=C_3e^{kt/3} =C_3e^{-m^2\pi^2t/12} \\ 因此u(x,t)= X(x)T(t)= \sum_{n=1}^\infty A_ne^{-n^2\pi^2 t/12} \sin (n\pi x/2),再由u(x,0)=2\sin(3\pi x) \\ \Rightarrow \cases{A_6= 2\\ A_n=0,n\ne 6} \Rightarrow \bbox[red, 2pt]{u(x,t)=2e^{3\pi^2 t} \sin(3\pi x)}
=================== END ============================
沒有留言:
張貼留言