Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

網頁

2022年11月30日 星期三

107年台綜大轉學考-工程數學D36詳解

 臺灣綜合大學系統107學年度學士班轉學生聯合招生考試

科目名稱:工程數學
類組代碼:D36

解答f(x)=exf[n](x)=exf[n](0)=1,n0n=01n!xnf[n](0)n=01n!xn=1+x+12x2+13!x3++1n!xn+

解答exn=01n!xn=1+x+12x2+13!x3++1n!xn+ex1x+12x213!x3++1n!(1)nxn+101exxdx10112x+13!x2+1n!(1)n1xn1+dx=[x14x2+118x3196x4+1600x5]|10114+118196+16000.797
解答y+4y=201204ydy=1dx14ln(204y)=x+C1ln(204y)=4x4C1y(0)2ln12=4C1ln(204y)=4x+ln12204y=12e4xy=53e4x

解答u=1yu=1y2y=u2yy=1u2uxu2u3u+x4u2=0xu+3u=x4u+3xu=x3I(x)=e(3/x)dx=x3x3u+3x2u=x6(x3u)=x6x3u=x6dx=17x7+Cx3y=17x7+Cy(1)=11=17+CC=67y=7x3x7+6


解答y


解答{d\omega\over dt} +{3C_D\over 2(2G+1)d}\omega^2 = {2(G-1)g\over 2G+1} \equiv \omega'+A\omega^2 = B\Rightarrow \int {1\over B-A\omega^2} \,d\omega = \int 1\,dt \\\Rightarrow \cfrac{\tanh^{-1}\left(\sqrt{A\over B}\omega \right)}{ \sqrt{AB}} =t+C,由初始值\omega(0)=0 \Rightarrow C=0 \Rightarrow \sqrt{A\over B}\omega=\tanh(t\sqrt{AB})\\ \Rightarrow \omega = \sqrt{B\over A}\tanh(t\sqrt{AB}) =\sqrt{4(G-1)gd\over 3C_D} \tanh(t\sqrt{ 3C_D(G-1)g \over (2G+1)^2d}) \\ \Rightarrow \bbox[red,2pt]{\omega(t)=\sqrt{4(G-1)gd/(3C_D)}\cdot \tanh \left(t\sqrt{3C_D(G-1)g/(2G+1)^2d} \right)}

解答u(x,t)=X(x)T(t) \Rightarrow u_{xx}-3u_t= X''T-3XT'=0 \Rightarrow {X''\over X}=3{T'\over T} =k,k為常數 \\ \Rightarrow X''-kX=0,以下就k值分別討論:\\\text{Case I: } k=0\Rightarrow X''=0 \Rightarrow X=C_1x+ C_2,由於u(0,t)= u(2,t)=0,即X(0)=X(2)=0\\ \qquad \Rightarrow \cases{C_2=0\\ 2C_1+C_2=0} \Rightarrow X=0為明顯解,不討論\\ \text{Cases II: }k\gt 0 \Rightarrow X''-kX=0 \Rightarrow X=C_1e^{\sqrt k x} +C_2e^{-\sqrt kx} \Rightarrow \cases{X(0)= C_1+C_2 = 0\\ X(2)= C_1e^{2\sqrt k} +C_2e^{-2\sqrt k}=0} \\ \qquad \Rightarrow \cases{C_2=-C_1 \\ C_1e^ {4\sqrt k}+C_2=0} \Rightarrow C_1e^{4\sqrt k}-C_1=0 \Rightarrow C_1(e^{4\sqrt k}-1)=0 \Rightarrow C_1=0(k\gt 0 \Rightarrow e^{4\sqrt k}\ne 1) \\\qquad \Rightarrow C_1=C_2=0 \Rightarrow X=0為明顯解,不討論\\ \text{Cases III:}k\lt 0 \Rightarrow k=-t^2,t\ne 0,t\in\mathbb{R} \Rightarrow X''+t^2X=0 \Rightarrow X= C_1\cos tx +C_2\sin tx \\ \qquad \Rightarrow \cases{X(0)= 0 =C_1\\ X(2)=0 = C_1\cos 2t+ C_2\sin 2t} \\\qquad \Rightarrow C_2\sin 2t=0 \Rightarrow \cases{C_2=0 \Rightarrow C_1=C_2=0 \Rightarrow X=0為明顯解\\ 2t=m\pi,m\in \mathbb{Z}\Rightarrow t=m\pi/2} \\ \qquad \Rightarrow X=C_2\sin{m\pi x\over 2} ;又t=m\pi/2 \Rightarrow k=-m^2\pi^2/4 \Rightarrow T'-{k\over 3}T=0 \\ \qquad\Rightarrow T=C_3e^{kt/3} =C_3e^{-m^2\pi^2t/12} \\ 因此u(x,t)= X(x)T(t)= \sum_{n=1}^\infty A_ne^{-n^2\pi^2 t/12} \sin (n\pi x/2),再由u(x,0)=2\sin(3\pi x) \\ \Rightarrow \cases{A_6= 2\\ A_n=0,n\ne 6}  \Rightarrow \bbox[red, 2pt]{u(x,t)=2e^{3\pi^2 t} \sin(3\pi x)}

=================== END ============================

解題僅供參考,其他轉學考歷屆試題及詳解

沒有留言:

張貼留言