網頁

2022年12月25日 星期日

111年高中運動績優生甄試(補考)--數學科詳解

111學年度高級中等以上學校運動成績優良學生

升學輔導甄試學科考試數學科試題

說明:單選題共40 題,請在「答案卡」上劃記。每題 2.5 分,共100分。

考試日期:民國111年7月14日

解答:$$\sqrt{11+ 2\sqrt{18}} =\sqrt{(9+2)+ 2\sqrt{9\times 2}} = \sqrt 9+\sqrt 2=3+\sqrt 2,故選\bbox[red,2pt]{(C)}$$
解答:$$|x-4|\le 9 \Rightarrow -9\le x-4\le 9 \Rightarrow -5\le x\le 13 \Rightarrow 最大整數x=13,故選\bbox[red,2pt]{(D)}$$
解答:$${100\over 7}\lt x\lt {140\over 7} \Rightarrow 14.2 \lt x\lt 20 \Rightarrow x=15,16,17,18, 19,共5個,故選\bbox[red,2pt]{(B)}$$
解答:$$8^{-1/3} ={1\over \sqrt[3] 8} ={1\over 2},故選\bbox[red,2pt]{(E)}$$
解答:$$f(1)=3 \Rightarrow f(x)=(x-1)p(x)+3 \Rightarrow f(x)除以(x-1)的餘式為3,故選\bbox[red,2pt]{(A)}$$
解答:$$\log x+1 =\log x+\log 10 = \log 10x = \log 100 \Rightarrow x=10,故選\bbox[red,2pt]{(B)}$$
解答:$$令f(x)=ax+b,則\cases{f(1)=1 \\ f(2)=3} \Rightarrow \cases{a+b=1\\ 2a+b=3} \Rightarrow \cases{a=2\\ b=-1} \Rightarrow f(x)=2x-1\\ \Rightarrow f(5)=10-1=9,故選\bbox[red,2pt]{(C)}$$
解答:$$y=f(x)=2(x+1)^2-3 \Rightarrow 頂點坐標(-1,-3) \xrightarrow{向右平移1單位}(0,-3) \xrightarrow{向上平移3單位}(0,0),故選\bbox[red,2pt]{(E)}$$

解答:$$f(x)=2x^3-6x^2 +x+k = 2(x-1)^3-5(x-1)-4 \Rightarrow f(1)=-3+k = -4\\ \Rightarrow k=-1,故選\bbox[red,2pt]{(D)}$$

解答:$$f(x)=a(x-2)^3 +b(x-2)^2 +cx+d \Rightarrow f'(x)=3a(x-2)^2+ 2b(x-2)+ c \Rightarrow f'(2)=c\\ 在x=2附近的一次近似為y=3x+4 \Rightarrow \cases{f'(2)=3\\ f(2)=3\cdot 2+4=10} \Rightarrow \cases{c=3\\ 2c+d= 10} \Rightarrow d=4\\ 又廣域特徵與y=5x^3相似 \Rightarrow a=5,因此a+c+d= 5+3+4= 12,故選\bbox[red,2pt]{(A)}$$
解答:$$y=mx+k 通過P(2,1)及Q(4,-3) \Rightarrow \cases{1=2m+k\\ -3= 4m+k} \Rightarrow \cases{m=-2\\ k=5},故選\bbox[red,2pt]{(E)}$$
解答:$$\cases{A(1,0)\\ B(0,1)} \Rightarrow L:\overleftrightarrow{AB}:x+y=1,所圍區域包含(0,0),因此x+y\le 1,故選\bbox[red,2pt]{(A)}$$
解答:$$\cases{L:3x+4y-20=0\\ P(2,1)} \Rightarrow d(P,L)= \left|6+4-20 \over \sqrt{3^2+4^2}\right| ={10\over 5}=2,故選\bbox[red,2pt]{(B)}$$
解答:$$x^2+y^2-2x-k=0 \Rightarrow (x-1)^2+y^2 =k+1 \Rightarrow 半徑r=\sqrt{k+1} =2 \Rightarrow k=3,故選\bbox[red,2pt]{(C)}$$
解答:$$x^2+ y^2=1 \Rightarrow 2x+ 2yy'=0 \Rightarrow y'=-{x\over y}=切線斜率m=\sqrt 3 \Rightarrow x=-\sqrt 3y\\ \Rightarrow \overline{OP}斜率={y\over x} = -{1\over \sqrt {3}},故選\bbox[red,2pt]{(D)}$$
解答:$$a_{n+1}={a_n\square 7\over 3a_n \square 5} \Rightarrow a_2= {1\square 7\over 3  \square 5} ,取\square = - \Rightarrow a_2= {1-7\over 3-5} ={-6\over -2}=3,故選\bbox[red,2pt]{(A)}$$
解答:$$\cases{a_1=1 \\ r=2} \Rightarrow a_1+a_2 +a_3+a_4 +a_5 = 1+ 2+ 4+ 8+ 16= 31,故選\bbox[red,2pt]{(D)}$$
解答:$$P_{75}= Q_3,而\lceil 30\times {3\over 4} \rceil =\lceil 22.5 \rceil = 23 \Rightarrow 排名第23為85,故選\bbox[red,2pt]{(E)}$$
解答:$$2\times (-3)\lt 0 \Rightarrow 新的相關係數=0.8\times (-1)=-0.8,故選\bbox[red,2pt]{(B)}$$
解答:$$百位數有4種選擇、十位數有3種選擇、個位數有2種選擇,共有4\times 3\times 2=24種,故選\bbox[red,2pt]{(C)}$$
解答:$$C^4_2=6,其中相連情形為(1,2),(2,3),(3,4),共三種;因此共有6-3=3種安排方式,故選\bbox[red,2pt]{(B)}$$

解答:$${C^4_1 C^2_1\over C^6_2} = {8\over 15},故選\bbox[red,2pt]{(E)}$$
解答:$$50\times 0.5+ 10\times 0.5=30,故選\bbox[red,2pt]{(C)}$$
解答:$$\sin^2\theta +\cos^2 \theta =1 \Rightarrow \cos^2\theta = 1-\sin^2\theta =1-x^2,故選\bbox[red,2pt]{(D)}$$
解答:$$\cos(120^\circ)=  \cos(180^\circ-60^\circ) = -\cos 60^\circ =-{1\over 2},故選\bbox[red,2pt]{(A)}$$
解答:$$正弦定理:{\overline{BC} \over \sin \angle BAC}=2R \Rightarrow {5\sqrt 3\over \sqrt 3/2} =2R \Rightarrow R=5,故選\bbox[red,2pt]{(E)}$$
解答:$$\stackrel{\large \frown}{AB} =6\times {2\pi\over 3} =4\pi \Rightarrow 扇形周長=2\cdot 6+4\pi =12+4\pi,故選\bbox[red,2pt]{(C)}$$
解答:$$\sin x的週期=2\pi \Rightarrow \sin(2x)的週期=\pi \Rightarrow 3\sin(2x-{\pi\over 2})的週期= \sin(2x)的週期=\pi,故選\bbox[red,2pt]{(D)}$$
解答:$$(A)\times: \log_5 {1\over 5}= \log_5 5^{-1}=-1\ne 1\\ (B)\bigcirc: \log_4 9 = {\log_2 9\over \log_2 4} ={2\log_2 3\over 2\log_2 2} =\log_2 3 \\(C)\times: \log_3 (5^2)= 2\log_3 5 \ne (\log_3 5)^2\\ (D)\times: \log_3 7-\log_3 5 =\log_3 {7\over 5} \ne {\log_3 7\over \log_3 5} \\ (E)\times: \log_3 2+\log_3 5=\log_3 10\ne \log_3 7\\,故選\bbox[red,2pt]{(B)}$$
解答:$$y=({1\over 2})^x \Rightarrow \cases{y(0)=1\\ 圖形為遞減},故選\bbox[red,2pt]{(A)}$$
解答:$$\cases{\vec a=(2,-1)\\ \vec b=(3,4)} \Rightarrow 3\vec a-\vec b=(6,-3)-(3,4) = (3,-7),故選\bbox[red,2pt]{(E)}$$
解答:$$\cos 60^\circ ={\vec u\cdot \vec v\over |\vec u||\vec v|} \Rightarrow  \vec u\cdot \vec v= {1\over 2}\cdot 2\cdot 6=6,故選\bbox[red,2pt]{(B)}$$
解答:$$B,D為格子點的對角位置,距離為\sqrt 2,故選\bbox[red,2pt]{(D)}$$
解答:$$\sqrt{1^2+3^2} =\sqrt{10},故選\bbox[red,2pt]{(C)}$$
解答:$$3a+1= 4 \Rightarrow a=1,故選\bbox[red,2pt]{(A)}$$
解答:$$w=2\cdot 4+ 4\cdot 3=8+12=20,故選\bbox[red,2pt]{(E)}$$
解答:$$\begin{bmatrix} m & n\\ k & t\end{bmatrix} =\begin{bmatrix} 3 & 2\\ 6 & 5\end{bmatrix}^{-1} ={1\over 15-12} \begin{bmatrix} 5 & -2\\ -6 & 3\end{bmatrix} =\begin{bmatrix} 5/3 & -2/3\\ -2 & 1\end{bmatrix} \Rightarrow k=-2,故選\bbox[red,2pt]{(A)}$$
解答:$$P(A\cup B)= P(A)+ P(B)-P(A\cap B) \Rightarrow P(A\cap B)= {1\over 2}+{1\over 3}-{7\over 12}={1\over 4},故選\bbox[red,2pt]{(C)}$$
解答:$${30\%\over 50\%} =0.6,故選\bbox[red,2pt]{(D)}$$
解答:$$\cases{甲袋抽中紅球機率p_1=3/5\\ 乙袋抽中紅球機率p_2= 1/5} \Rightarrow {抽中甲袋紅球機率\over 抽中紅球機率}= {p_1\over p_1+p_2} ={3/5\over 3/5+1/5} ={3\over 4},故選\bbox[red,2pt]{(B)}$$

=============== END ===================

解題僅供參考,其它轉學考試題及詳解

沒有留言:

張貼留言