網頁

2023年1月10日 星期二

112年初等考試-統計學大意詳解

112年公務人員初等考試試題

等 別:初等考試
類 科:統計
科 目:統計學大意
考試時間:1 小時 

解答:$$\cases{兩顆球相同的情形:AA,BB,CC,DD,EE,共C^5_1=5種  \\兩顆球相異的情形AB,AC,AD,AE,BC,BD,BE,CD,CE,DE,共C^5_2= 10種} \\ \Rightarrow 共5+10=15種情形,故選\bbox[red,2pt]{(B)}$$
解答:$$一副撲克牌有四張A \Rightarrow 抽中兩張A的樣本數=C^4_2 \Rightarrow 欲求之機率={C^4_2\over C^{52}_2} = {4\times 3\over 52\times 51} \\={1\over 13\times 17} ={1\over 221},故選\bbox[red,2pt]{(C)}$$
解答:$$A,B獨立\Rightarrow P(A\cap B)= P(A)P(B) \Rightarrow P(A\cup B)= P(A)+ P(B)-P(A\cap B)\\ = 0.2+0.3- 0.2\times 0.3=0.44 ,故選\bbox[red,2pt]{(C)}$$
解答:$$\cases{\mu=30\\ \sigma^2= 4} \Rightarrow P(25\lt x\lt 35) =P(-5\lt x-30\lt 5)= P( -{5\over 2}\cdot \sigma\lt x-\mu\lt {5\over 2}\cdot \sigma) \\未知母體分配,採用柴比雪夫不等式\Rightarrow P( -{5\over 2}\cdot \sigma\lt x-\mu\lt {5\over 2}\cdot \sigma)  \ge 1-{1\over (5/2)^2} ={21\over 25}\\,故選\bbox[red,2pt]{(C)}$$
解答:$$\cases{X\sim N(42,800,5,850)\\ Y\sim N(12,800,2,250)}\Rightarrow X+Y \sim N(42800+12800,5850+2250) = N(48650, 8100)\\ \Rightarrow Var(X+Y)=8100 \Rightarrow \sigma(X+Y)= \sqrt{8100}=90,故選\bbox[red,2pt]{(A)}$$
解答:$$\cases{右偏:眾數\lt 中位數\lt 平均數 \\左偏:眾數\gt 中位數\gt 平均數 },故選\bbox[red,2pt]{(C)}$$
解答:$$每筆資料加10,中位數也加10,故選\bbox[red,2pt]{(B)}$$
解答:$$共有3+4+5+8+4+3+1=28位學生,排名第14,第15的成績分別為61及62,\\因此中位數=(61+62)\div 2=61.5,故選\bbox[red,2pt]{(C)}$$
解答:$$P(60\lt X\lt 90) = P(-1\lt {X-70\over 10}\lt 2) = P(-1\lt Z\lt 2) \\= P(|Z|\lt 1)+{1\over 2}(P(|Z|\lt 2)-P(|Z|\lt 1)) =68\% +{1\over 2}(95\%-68\%)=81.5\%,故選\bbox[red,2pt]{(C)}$$
解答:$$X=1 \Rightarrow 樣本=\{(1,2),(2,3),(3,4),(4,5),(5,6),(2,1),(3,2),(4,3),(5,4),(6,5)\}\\ \Rightarrow 樣本數=10\Rightarrow 機率={10\over 36},故選\bbox[red,2pt]{(A)}$$
解答:$$7個人都不中獎的機率=(1-15\%)^7 \Rightarrow 至少一人中獎的機率=1-(1-15\%)^7 \\ \approx 1-0.32=0.68,故選\bbox[red,2pt]{(C)}$$
解答:$$\cases{抽中25人班的機率:16\times 25/1000=0.4 \\抽中100人班的機率:3\times 100/1000=0.3 \\抽中300人班的機率:300  /1000=0.3 } \Rightarrow X=25\times 0.4+ 100\times 0.3+ 300\times 0.3=130\\,故選\bbox[red,2pt]{(D)}$$
解答:$$p(x)={1\over 2} \Rightarrow \cases{E(X)= \int_0^2 xp(x)\,dx = 1\\ E(X^2) =\int_0^2 x^2p(x)\,dx = {4\over 3}} \Rightarrow Var(X)=E(X^2)-(E(X))^2 = {1\over 3}\\ \Rightarrow Var(\bar X)=Var(X)/n = {1\over 3}\div 36={1\over 108},故選\bbox[red,2pt]{(B)}$$
解答:$$X\sim N(400,25^2) \Rightarrow \bar X\sim N(400,25^2/25=25) \Rightarrow P(395\lt \bar X\lt 405)\\ \Rightarrow P(-1\lt {\bar X-400\over 5}\lt -1)= P(|z|\lt 1)\approx 0.68,故選\bbox[red,2pt]{(D)}$$
解答:$$便利抽樣隨性選擇樣本,如街訪,與機率無關,故選\bbox[red,2pt]{(B)}$$
解答:$$依中央極限定理\bar X \sim N(\mu,\sigma^2/n) \Rightarrow {\bar X-\mu \over \sigma/\sqrt n} \sim N(0,1) \Rightarrow {n(\bar X-\mu)^2\over \sigma^2} 的期望值=0,故選\bbox[red,2pt]{(C)}$$
解答:$$\bar x=(2+4+5 +6+8+5)\div 6= 30\div 6=5 \\\Rightarrow \sigma =\sqrt{(2-5)^2 +(4-5)^2 +(5-5)^2 +(6-5)^2+ (8-5)^2 +(5-5)^2 \over 5-1} =\sqrt{20\over 5}=2,故選\bbox[red,2pt]{(B)}$$
解答:$$區間寬度與區間中間值\bar x(樣本平均數)無關,故選\bbox[red,2pt]{(A)}$$
解答:$$信賴區間:\bar x\pm t(\alpha/2,n-1){s\over \sqrt n} =70\pm t(0.025,24)\cdot {10\over \sqrt {25}} =(70-2.064\times 2,70+ 2.064\times 2)\\ =(65.872,74.128),故選\bbox[red,2pt]{(D)}$$
解答:$$(0.22,0.28)= 0.25\pm 0.03 \Rightarrow p=0.25  \Rightarrow n\ge (z_{\alpha/2})^2\cdot {p(1-p)\over E^2} =1.96^2 \cdot {0.25\cdot 0.75\over 0.03^2}\\ =800.33 \Rightarrow n=801,故選\bbox[red,2pt]{(B)}$$
解答:$$f(x;\theta)= {1\over \theta}x^{(1-\theta)/\theta} \Rightarrow L(\theta)=f(x_1,x_2,\dots,x_n;\theta)={1\over \theta}x_1^{(1-\theta)/\theta} \cdot{1\over \theta}x_2^{(1-\theta)/\theta}\cdots {1\over \theta}x_n^{(1-\theta)/\theta}\\ \Rightarrow \ln L(\theta)=-n\ln \theta+{1-\theta\over \theta}\sum_{i=1}^n\ln  x_i \Rightarrow {d\over d\theta} \ln L(\theta) = -{n\over \theta}-{1\over \theta^2}\sum_{i=1}^n\ln  x_i =0 \\ \Rightarrow n\theta +\sum_{i=1}^n\ln  x_i =0 \Rightarrow \theta =-{1\over n}\sum_{i=1}^n\ln  x_i ,故選\bbox[red,2pt]{(A)}$$
解答:$$樣本平均值\bar x=(6+5+9 +8+10 +10+7 +9 +8)\div 9=8\\ \Rightarrow 檢定統計量z={\bar x-7\over \sigma /\sqrt n} ={8-7\over 4/\sqrt 9} ={3\over 4}=0.75 \Rightarrow z_{0.2266}=0.75 \Rightarrow P值=0.2266,故選\bbox[red,2pt]{(B)}$$
解答:$$\cases{\bar x_1=30,s_1^2=5,n_1=16\\ \bar x_2=27,s_2^2=4,n_2=11} \Rightarrow 檢定統計量=\cfrac{\bar x_1-\bar x_2 }{ \sqrt{{(n_1-1)s_1^2 +(n_2-1)s_2^2\over n_1+ n_2-2}} \cdot \sqrt{{1\over n_1}+ {1\over n_2}}} \\= \cfrac{30-27}{ \sqrt{{15\cdot 5 + 10\cdot 4\over 16+11-2}} \cdot \sqrt{{1\over 16}+{1\over 11}}}=3.57122,故選\bbox[red,2pt]{(A)}$$
解答:$$\cases{p_1=70/100=0.7\\ p_2=30/100=0.3\\ n_1=n_2= 100} \Rightarrow p={n_1p_1+ n_2p_2 \over n_1+n_2}=0.5 \Rightarrow 檢定統計量={p_1-p_2\over \sqrt{p(1-p)({1\over n_1}+{1\over n_2})}} \\={0.7-0.3\over \sqrt{0.5\cdot 0.5({1\over 100}+ {1\over 100})}} ={0.4\over \sqrt{0.25\cdot 0.02}} =5.6568,故選\bbox[red,2pt]{(A)}$$
解答:$$n\ge z_{\alpha/2}^2 \cdot {\sigma^2 \over E^2} =1.96^2\cdot {10^2\over 2^2}=96.04 \Rightarrow n=97,故選\bbox[red,2pt]{(C)}$$
解答:$$共有5\times 7=35位受試者 \Rightarrow 組內變異自由度=35-5=30,故選\bbox[red,2pt]{(C)}$$
解答:$${460-300\over 45-5}={160\over 40}=4,故選\bbox[red,2pt]{(D)}$$
解答:$$\begin{array}{} 變異& 自由度& 平方和&均方 & F\\\hline 組間變異& 5-1=4 & SSB=300 & 300/4=75 & 75/5=15\\ 組內變異& 5\cdot 7-5=30 & SST-SSB=450-300=150 & 150/30=5\\ 總變異& 5\cdot 7-1=24 & SST=450\\\hline\end{array}\\ \Rightarrow 檢定統計量F=15,故選\bbox[red,2pt]{(C)}$$
解答:$$相關係數r={n\sum x_iy_i-\sum x_i \cdot \sum y_i \over \sqrt{n\sum x_i^2-(\sum x_i)^2} \cdot \sqrt{n\sum y_i^2 -(\sum y_i)^2}} \\={30\cdot 7750-144\cdot 1713\over \sqrt{30\cdot 818-144^2} \cdot \sqrt{30\cdot 100031-1713^2}} \approx -0.89,故選\bbox[red,2pt]{(D)}$$
解答:$$自變數越多,判定係數會膨脹,故選\bbox[red,2pt]{(B)}$$
解答:$$預估值\hat y=-1.2+0.6\times 6=2.4 \Rightarrow 殘差=y-\hat y=2-2.4=-0.4,故選\bbox[red,2pt]{(D)}$$
解答:$$t={b\over \sigma_b} ={-1.19\over 0.09} =-13.22,故選\bbox[red,2pt]{(C)}$$
解答:$$R^2=0.75={3\over 4} \Rightarrow 相關係數r=\pm\sqrt{3\over 4};由於迴歸直線斜率=7 \gt 0 \Rightarrow r={\sqrt 3\over 2} \\ \Rightarrow 檢定統計量t=r\sqrt{n-2\over 1-r^2} ={\sqrt 3\over 2}\cdot \sqrt{27\over 1/4} =9,故選\bbox[red,2pt]{(B)}$$
解答:$$\begin{array}{c|ccc| c} 顏色& 20歲以下& 21-40歲 & 40歲以上& 小計\\\hline 紅& 12 & 2 & 6 & 20\\\hline黃& 20 & 10 & 10 & 40 \\\hline 白& 8 & 18 & 14 & 40\\\hdashline 小計& 40 & 30 & 30 & 100\end{array} \\ \Rightarrow 購買黃色產品的期望值=(20歲以下總銷售量)\times {黃色銷售量\over 總銷量}=40\times {40\over 100}=16,故選\bbox[red,2pt]{(A)}$$
解答:$$擲120次公正骰子,各點應出現20次,因此檢定統計量卡方值 \chi^2\\={1\over 20}((20-16)^2+ (20-24)^2+ (20-26)^2 +(20-18)^2 +(20-12)^2+ (20-24)^2) \\={1\over 20}(16+16+ 36+4+64+16) = {152\over 20} =7.6,故選\bbox[red,2pt]{(B)}$$
解答:$$自由度df=5,而7.6 \not \gt \chi_{(5)}^2 \Rightarrow 不拒絕虛無假設,故選\bbox[red,2pt]{(B)}$$
解答:$$(A)\times: df=(3-1)(2-1)=2\ne 6\\ (B)\times: H_a:畢業流量與性別有關\\(C)\bigcirc: 計算過程如下\\ 觀察值:\begin{array}{c|ccc|c} & 繼續升學& 直接就業 & 自行創業 & 小計\\\hline 男生& 15& 75& 20 & 110\\\hline 女生& 26& 60& 4 & 90\\\hdashline 小計& 41 & 135 & 24 & 200\end{array} \\\Rightarrow 期望值:\begin{array}{c|ccc|c} & 繼續升學& 直接就業 & 自行創業 & 小計\\\hline 男生& 41\cdot {11\over 20} = 22.55 & 135 \cdot {11\over 20} =74.25 & 24\cdot {11\over 20} =13.2 & 110\\\hline 女生& 41\cdot {9\over 20} = 18.45 & 135 \cdot {9\over 20}=60.75 & 24\cdot {9\over 20} =10.8 & 90\\\hdashline 小計& 41 & 135 & 24 & 200\end{array} \\ \Rightarrow \chi^2 ={(22.55-15)^2 \over 22.55}+{ (74.25-75)^2 \over 74.25} +{(13.2-20)^2 \over 13.2}   \\ \qquad +{(18.45-26)^2 \over 18.45} +{(60.75-60)^2 \over 60.75} +{(10.8-4)^2 \over 10.8} =6.0384+7.3803=13.4187\\,故選\bbox[red,2pt]{(C)}$$
解答:$$N=3+15+ 22+10=50 \Rightarrow 期望值\cases{E_1=50\cdot f(1)= 6 \\ E_2= 50\cdot f(2)= 20\\ E_3= 50\cdot f(3)=19\\ E_4= 50\cdot f(4)=5} 又觀察值\cases{O_1=3\\ O_2=15\\ O_3=22\\ O_4=10}\\ \Rightarrow 檢定統計量\chi^2 =\sum_{i=1}^4 {(E_i-O_i)^2 \over E_i} ={(6-3)^2\over 6} +{(20-15)^2\over 20} +{(19-22)^2\over 19} +{(5-10)^2\over 5} \\ =8.224,故選\bbox[red,2pt]{(B)}$$
解答:$$\cases{冬季\Rightarrow X_{i1}=1\\ 女性\Rightarrow X_{i4}=1\\ 其他X_{i2}= X_{i3}= 0} \Rightarrow 期望值=\beta_0+ \beta_1+0+0 +\beta_4+ \beta_5+ 0 +0+0=\beta_0+ \beta_1 +\beta_4+\beta_5\\,故選\bbox[red,2pt]{(A)}$$
解答:$$假設\cases{第t週的預估值F(t)\\ 第t週的實際值R(t)\\ F(1)=R(1)=17} \Rightarrow F(2)=0.2R(1)+0.8F(1)=17 \Rightarrow F(3) =0.2R(2)+ 0.8F(2) \\= 0.2\cdot 18+0.8\cdot 17= 17.2 \Rightarrow 預測誤差=R(3)-F(3)= 20-17.2 = 2.8,故選\bbox[red,2pt]{(C)}$$
==================== END =======================
解題僅供參考,其他歷年試題及詳解


沒有留言:

張貼留言