臺灣警察專科學校 112 學年度專科警員班第 42 期正期學生組
新生入學考試甲組數學科試題
壹、單選題:30 題,題號自第 1 題至第 30 題,每題 2 分,計 60 分。
解答:令f(x,y)=11x−7y−1⇒f(7,11)=77−77−1<0(A)◯:f(6,10)=66−70−1<0⇒f(6,10)⋅f(7,11)>0⇒同側(B)×:f(8,12)=88−84−1>0⇒f(8,12)⋅f(7,11)<0⇒異側(C)×:f(9,9)>0(D)×:f(11,7)=>0故選(A)解答:Y=−110X⇒σ(Y)=|110|σ(X)=a10,故選(D)
解答:15x=2π⇒x=215π,故選(B)
解答:(3+2+2)!3!2!2!=7!6⋅2⋅2=504024=210,故選(A)
解答:P=2B+3A5=1.6×2+(−5.9)×35=−14.55=−2.9,故選(B)
解答:10000=1002⇒√1002+n=a為整數⇒最小的a=101⇒1002+a=1012⇒n=1012−1002=201,故選(D)
解答:log30.3=log0.3log3=log310log3=log3−1log3=1−1log3,故選(D)
解答:1−sin79∘×cos79∘tan79∘=1−sin79∘×cos79∘sin79∘/cos79∘=1−cos279∘=sin279∘=sin2(90∘−11∘)=cos211∘,故選(D)
解答:{a3=a1r2=3a6=a1r5=−24,兩式相除⇒1r3=−18⇒r=−2⇒a3=a1(−2)2=3⇒a1=34⇒a1+a2+⋯+a10=a1(1+r+r2+⋯+r9)=34⋅1−(−2)101−(−2)=34⋅1−10243=−10234,故選(A)
解答:兩直線{3x−4y=54x+ky=5平行⇒34=−4k⇒k=−163⇒兩直線{3x−4y=54x−163y=5⇒{3x−4y=53x−4y=154距離=5−15/4√32+42=5/45=14,故選(A)
解答:¯AB與¯CD的距離即為立方體邊長=1,故選(A)
解答:{A(0,1,−1)B(1,−3,−8)C(0,−1,−5)⇒{→AB=(1,−4,−7)→AC=(0,−2,−4)⇒→n=→AB×→AC=(2,4,−2)⇒△ABC面積=12|→n|=12√4+16+4=√6,故選(A)
解答:y=x(3−2x2)=0⇒x=0,±√32,又x3係數為負值⇒圖形為左上右下,故選(D)
解答:{(x+2)2(x−2)2=((x+2)(x−2))2=(x2−4)2=x4−8x2+16(x+1)(x−1)=x2−1再利用長除法可得(x+2)2(x−2)2=(x+1)(x−1)(x2−7)+9⇒餘式為9,故選(B)
解答:
x2+y2+8x+12y+25=0⇒(x2+8x+16)+(y2+12y+36)+25−16−36=0⇒(x+4)2+(y+6)2=27=(3√3)2⇒{圓心O(-4,-6)半徑r=3√3過P(−3,−5)作弦¯AB,使其¯AB⊥¯OP,則¯AB就是最短的弦長在直角△APO中,¯OP=√12+12=√2⇒¯AP=√r2−¯OP2=√27−2=5⇒¯AB=2¯AP=10,故選(B)
解答:y=f(x−1)=f(x)+3⇒a(x−1)+b=ax+b+3⇒ax−a+b=ax+b+3⇒−a+b=b+3⇒a=−3,故選(B)
解答:
解答:y=f(x−1)=f(x)+3⇒a(x−1)+b=ax+b+3⇒ax−a+b=ax+b+3⇒−a+b=b+3⇒a=−3,故選(B)
解答:
令{L1:y=0L2:x+2y=4L3:x−y=1,則所圍區域各頂點坐標{A=L1∩L3=(1,0)B=L2∩L3=(2,1)C=L1∩L2=(4,0)⇒△ABC面積=12⋅3⋅1=1.5,故選(A)
解答:甲被選中後剩下九人,九人中選中乙或丙的機率都是19,因此機率為19+19=29,故選(B)
解答:{a1=1an=3an−1+1⇒a2=4⇒a3=13⇒a4=40⇒a5=121⇒a6=364,故選(C)
解答:|x−10π|≤π⇒−π≤x−10π≤π⇒9π≤x≤11π⇒28.3≤x≤34.5⇒x=29,30,31,32,33,34⇒共六個解,故選(C)
解答:f(x)=(x−1)(x+1)(x+3)+5=(x2−1)(x+3)+5=x3+3x2−x+2⇒f′(x)=3x2+6x−1⇒f″
解答: \begin{bmatrix} a & b\\ c& d\end{bmatrix} \begin{bmatrix} 12 & 24\\ 36& 48\end{bmatrix} = \begin{bmatrix} 0 & 2\\ 3& 0 \end{bmatrix} \Rightarrow 24a+48b=2 \Rightarrow 12a+24b=1 \\ 因此 \begin{bmatrix} a & b\\ c& d\end{bmatrix} \begin{bmatrix} 12 & 24\\ 24& 72\end{bmatrix} = \begin{bmatrix} 12a+24b=1 & ? \\ ? & ?\end{bmatrix} ,故選\bbox[red, 2pt]{(A)}
解答:\triangle ABC= \triangle ABD+ \triangle ACD \Rightarrow {1\over 2}\cdot 3\cdot 4\sin 120^\circ ={1\over 2}\cdot 3\cdot \overline{AD}\sin 60^\circ +{1\over 2}\cdot 4\cdot \overline{AD} \sin 60^\circ\\ \Rightarrow 3\sqrt 3= {3\over 4}\sqrt 3\overline{AD}+ \sqrt 3 \overline{AD} \Rightarrow \overline{AD}={12\over 7},故選\bbox[red, 2pt]{(B)}
解答:\overrightarrow{OP} =\overrightarrow{OB}+t\vec v=(2,-1)+(-t,3t) =(2-t,-1+3t) \Rightarrow P(2-t,-1+3t) \\ \Rightarrow \overrightarrow{AP} =(-t-13,-6+3t);\\由於\overrightarrow{OP} \bot \overrightarrow{AP} \Rightarrow \overrightarrow{OP} \cdot \overrightarrow{AP} = (2-t,-1+3t) \cdot (-t-13,-6+3t) =0\\ \Rightarrow 10t^2-10t-20=0 \Rightarrow 10(t-2)(t+1)=0 \Rightarrow \cases{t=2\\t=-1} \Rightarrow \cases{P=(0,5)\\ P=(3,-4)} \\ \Rightarrow \cases{\overline{OP}=5 \\ \overline{AP}= 15}\Rightarrow \triangle OAP ={1\over 2}\cdot \overline{OP}\cdot \overline{AP}={1\over 2}\cdot 5\cdot 15={75\over 2},故選\bbox[red, 2pt]{(C)}
解答:A(0,0,1)\in L:{x\over 2}={y\over 2}={z-k\over -1} \Rightarrow k=1,因此P\in L \Rightarrow P(2t,2t,-t+1),t\in \mathbb R \\ 將P代入E\Rightarrow 2t+ 4t-2(1-t)=14\Rightarrow t=2 \Rightarrow P(4,4,-1) \Rightarrow \overline{AP}= \sqrt{4^2+4^2 +2^2} =6\\,故選\bbox[red, 2pt]{(B)}
解答:x^2+y^2-4x-6y-12=0 \Rightarrow (x-2)^2 +(y-3)^2 =5^2 \\ 令\cases{x=5\cos \theta+2 \\ y=5\sin \theta+3} \Rightarrow 3x-4y=15\cos \theta-20\sin \theta-6 =25({3\over 5}\cos \theta-{4\over 5}\sin \theta)-6 \\ =25\sin(\theta+\alpha)-6 \Rightarrow |3x-4y|最大值=|-25-6|=31,故選\bbox[red, 2pt]{(C)}
解答:500\cdot 2^{n/2}\gt 10^5 \Rightarrow 2^{n/2 }\gt 200 \Rightarrow {n\over 2}\ge 8 \Rightarrow n\ge 16,故選\bbox[red, 2pt]{(D)}
解答:\cases{E法向量\vec n=(2,-4,5)\\ L方向向量\vec u=(-2,1,0)},假設 \vec n與\vec u夾角\phi \Rightarrow \cos \phi={\vec n\cdot \vec u\over |\vec n||\vec u|} ={-8\over 15}\\ \phi 與\theta互餘\Rightarrow \sin \theta =|\cos \phi|={8\over 15},故選\bbox[red, 2pt]{(A)}
解答:\cases{\triangle OBC/\triangle OAB=4\\ \triangle OAC/\triangle OAB=2} \Rightarrow {\triangle ABC\over \triangle OAB} =4+2-1=5,故選\bbox[red, 2pt]{(C)}
解答:\cases{P\in L_1 \Rightarrow P(-3+t,1+2t,1+2t) \\ Q\in L_2 \Rightarrow Q(s,1+2s,-5+2s)} \Rightarrow \overline{PQ}^2 =(s-t+3)^2 +(2s-2t)^2+(2s-2t-6)^2\\ 取x=s-t,則f(x)=\overline{PQ}^2 =(x+3)^2 +(2x)^2 +(2x-6)^2 = 9x^2-18x+45\\ \Rightarrow 當x=1時,\overline{PQ}^2有最小值9-18+45=36 \Rightarrow \overline{PQ}=6,故選\bbox[red, 2pt]{(B)}貳、多重選擇題:
解答:f(x)=(2x-3)^{12} =\sum_{k=0}^{12}C^{12}_k(2x)^k(-3)^{12-k} \\(A)\bigcirc:常數項=(-3)^{12}=3^{12} \\(B)\times: 有x^{12},x^{11},\dots,x,常數項,共13類\\ (C)\bigcirc: x^9係數=C^{12}_9\cdot 2^9 \cdot(-3)^3 \\(D)\bigcirc: f(1)=(-1)^{12}=1 \\(E)\bigcirc: g(x)=f(2x)= (4x-3)^{12} \Rightarrow g(1)=1\\,故選\bbox[red, 2pt]{(ACDE)}
解答:\begin{array}{} & X & Y &X^2 & Y^2 & XY\\\hline & 1& 1& 1& 1& 1\\ & 3 & 4& 9 & 16 & 12 \\ & 3 & 3& 9 & 9 & 9\\ & 4 & 2& 16 & 4& 8\\ & 5 & 3& 25& 9 & 15\\ & 5 & 2& 25& 4& 10\\ & 7 & 1& 49 &1 & 7 \\\hline \sum &28 & 16 & 134 & 44 & 62\end{array} \\(A)\times: \cases{\mu_x =28/7=4\\ \mu_y=16/7 } \Rightarrow \mu_X\gt \mu_Y \\(B) \times:\cases{E(X^2)=134/7 \Rightarrow \sigma_X=\sqrt{22\over 7} \\E(Y^2)=44/7 \Rightarrow \sigma_Y=2\sqrt{13}/7}\Rightarrow \sigma_X \gt \sigma_Y \\(C)\bigcirc: X越大Y越小\Rightarrow r\lt 0 \\(D) \times: 斜率變小,相關係數變得更小\\(E) \bigcirc: 斜率變正值(6\times 55-21\times 15 \gt 0)\\,故選\bbox[red, 2pt]{(CE)}
解答:\begin{bmatrix} 0 & 1\\ 1& 0\end{bmatrix} \begin{bmatrix} a\\ b\end{bmatrix} = \begin{bmatrix} 2\\ 1\end{bmatrix} \Rightarrow \cases{a=1\\ b=2} \\(A)\bigcirc: A(2,1),B(1,2)對稱於x=y \\ (B) \times:\overrightarrow{OA} \cdot \overrightarrow{OB} =(2,1)\cdot (1,2)=4\ne 0 \\(C) \times: B(1,2)在第一象限\\ (D) \bigcirc: \overline{OA}=\sqrt 5 =\overline{OB} \\(E) \times: \overleftrightarrow{AB}斜率={2-1\over 1-2}=-1 \ne -2\\,故選\bbox[red, 2pt]{(AD)}
解答:(A) \bigcirc: \cases{f(\pi/6)= \cos (\pi/6)=\sqrt 3/2 \\ g(\pi/6) =\cos(-\pi/6) =\sqrt 3/2} \\(B)\bigcirc: g(x)為f(x)的平移,兩者週期相同,f+g週期仍是2\pi \\ (C)\bigcirc: f+g=\cos x+\cos (x-\pi/3) =2 \cos(x-\pi/6)\cos (\pi/6) =\sqrt 3\cos(x-\pi/6)最大值=\sqrt 3 \\(D) \times: f-g週期仍為2\pi \\ (E)\times: f-g=\cos x-\cos (x-\pi/3) =-2\sin(x-\pi/6)\sin \pi/6=-\sin(x-\pi/6)最大值1\\,故選\bbox[red, 2pt]{(ABC)}
解答:(A) \bigcirc: a_{10}=S_{10}-S_9=10^2-9^2 =19 \\(B) \bigcirc: a_n= S_n-S_{n-1} =n^2 -(n-1)^2=2n-1為正奇數 \\ (C) \bigcirc: \Rightarrow a_n=2n-1 \Rightarrow 公差為2的等差數列 \\(D)\times: a_{10}+a_{11}+\cdots+ a_{20} =S_{20}-S_9=20^2-9^2=319\ne 300 \\ (E)\times: a_2+a_4 +\cdots +a_{20}= \sum_{k=1}^{10}a_{2k}= \sum_{k=1}^{10} 4k-1=4\cdot 55-10=210\\,故選\bbox[red, 2pt]{(ABC)}
解答:\begin{vmatrix}12 & 13\\ 22& 23 \end{vmatrix}+ 2\begin{vmatrix}11 & 13\\ 21& 23 \end{vmatrix} +3\begin{vmatrix}11 & 12\\ 21& 22 \end{vmatrix} =-10+2\cdot (-20)+3\cdot (-10)=-80\\(A)\times: 2應該為(-2) \\(B)\bigcirc: 正負號正確\\(C)\bigcirc: 剛好也是-10+2\cdot (-20)+3\cdot (-10)\\(D)\times: 其值為2+2\cdot 1+3\cdot 1,顯然錯誤\\ (E)\times: 正負號剛好相反\\,故選\bbox[red, 2pt]{(BC)}
解答:(A)\times: f(\alpha)=6 \Rightarrow 2^{-\alpha}=6 \Rightarrow -\alpha=\log_2 6 \Rightarrow \alpha\lt 0 \\(B)\times: f(2\alpha)= 2^{-2\alpha} =(2^{-\alpha})^2= 6^2=36 \ne 12 \\(C)\times: \cases{2^{-\alpha}=6 \Rightarrow 2^\alpha =1/6\\ 2^{-\beta}=12} \Rightarrow 2^{\alpha-\beta} =2 \ne{1\over 2} \\(D) \bigcirc:f({\alpha+\beta\over 2}) =2^{-(\alpha+ \beta)/2} =(2^{-(\alpha+\beta)})^{1/2} =\sqrt{6\cdot 12} \lt \sqrt{81}=9\\ (E)\bigcirc: \overline{AB}斜率={12-6\over \beta-\alpha} ={6\over 1}=6\\,故選\bbox[red, 2pt]{(DE)}
解答:(A)\bigcirc: 第2次只能是5,機率為{1\over 6} \\(B)\times: 期望值={1\over 36}(2\cdot 1+ 3\cdot 2+ 4\cdot 3+ 5\cdot 4+ 6\cdot 5+ 7\cdot 6+ 8\cdot 5+ 9\cdot 4+ 10\cdot 3+ 11\cdot 2+ 12\cdot 1) \\={253\over 36} \ne 6 \\(C) \bigcirc:{6\over 36}={1\over 6} \\(D)\bigcirc: 都是{3\over 36} \\ (E)\times: 乘積為奇數必須兩數皆為奇數,而乘積為偶數只兩數之一為偶數即可,因此偶數奇率較大\\,故選\bbox[red, 2pt]{(ACD)}
解答:(A) \times:{1\over 3}+{1\over 2}\lt 1 \\(B)\bigcirc: {2\over 3}+{1\over 2} \gt 1\\ (C)\times: -{1\over 2}+{2\over 3} \lt 1\\ (D)\bigcirc:\cos\theta+\sin \theta=\sqrt 2 \sin(\theta+45^\circ)可能\gt 1\\ (E) \bigcirc: \log 3+\log 5= \log 15 \gt 1\\,故選\bbox[red, 2pt]{(BDE)}
解答:(A) \bigcirc: \cases{\theta_3=60^\circ\\ \theta_6=120^\circ} \Rightarrow \sin\theta_3=\sin \theta_6={\sqrt 3\over 2} \\(B)\times: \theta_8 = 135^\circ \Rightarrow \cases{\cos 135^\circ=-1/\sqrt 2\\ \sin 135^\circ =1/\sqrt 2} \Rightarrow \cos \theta_8 \ne \sin \theta_8 \\(C) \times:\tan 135^\circ =-1\lt \cos 135^\circ=-1/\sqrt 2\\ (D)\bigcirc: 90^\circ\lt \theta_7 \lt \theta_8 \lt 180^\circ \Rightarrow \cos \theta_8\lt \cos \theta_7 \\(E)\times: 90^\circ\lt \theta_7 \lt \theta_8 \lt 180^\circ \Rightarrow \tan \theta_8 \gt \tan \theta_7\\,故選\bbox[red, 2pt]{(AD)}
解答:甲被選中後剩下九人,九人中選中乙或丙的機率都是19,因此機率為19+19=29,故選(B)
解答:|x−10π|≤π⇒−π≤x−10π≤π⇒9π≤x≤11π⇒28.3≤x≤34.5⇒x=29,30,31,32,33,34⇒共六個解,故選(C)
解答:f(x)=(x−1)(x+1)(x+3)+5=(x2−1)(x+3)+5=x3+3x2−x+2⇒f′(x)=3x2+6x−1⇒f″
解答: \begin{bmatrix} a & b\\ c& d\end{bmatrix} \begin{bmatrix} 12 & 24\\ 36& 48\end{bmatrix} = \begin{bmatrix} 0 & 2\\ 3& 0 \end{bmatrix} \Rightarrow 24a+48b=2 \Rightarrow 12a+24b=1 \\ 因此 \begin{bmatrix} a & b\\ c& d\end{bmatrix} \begin{bmatrix} 12 & 24\\ 24& 72\end{bmatrix} = \begin{bmatrix} 12a+24b=1 & ? \\ ? & ?\end{bmatrix} ,故選\bbox[red, 2pt]{(A)}
解答:\triangle ABC= \triangle ABD+ \triangle ACD \Rightarrow {1\over 2}\cdot 3\cdot 4\sin 120^\circ ={1\over 2}\cdot 3\cdot \overline{AD}\sin 60^\circ +{1\over 2}\cdot 4\cdot \overline{AD} \sin 60^\circ\\ \Rightarrow 3\sqrt 3= {3\over 4}\sqrt 3\overline{AD}+ \sqrt 3 \overline{AD} \Rightarrow \overline{AD}={12\over 7},故選\bbox[red, 2pt]{(B)}
解答:\overrightarrow{OP} =\overrightarrow{OB}+t\vec v=(2,-1)+(-t,3t) =(2-t,-1+3t) \Rightarrow P(2-t,-1+3t) \\ \Rightarrow \overrightarrow{AP} =(-t-13,-6+3t);\\由於\overrightarrow{OP} \bot \overrightarrow{AP} \Rightarrow \overrightarrow{OP} \cdot \overrightarrow{AP} = (2-t,-1+3t) \cdot (-t-13,-6+3t) =0\\ \Rightarrow 10t^2-10t-20=0 \Rightarrow 10(t-2)(t+1)=0 \Rightarrow \cases{t=2\\t=-1} \Rightarrow \cases{P=(0,5)\\ P=(3,-4)} \\ \Rightarrow \cases{\overline{OP}=5 \\ \overline{AP}= 15}\Rightarrow \triangle OAP ={1\over 2}\cdot \overline{OP}\cdot \overline{AP}={1\over 2}\cdot 5\cdot 15={75\over 2},故選\bbox[red, 2pt]{(C)}
解答:A(0,0,1)\in L:{x\over 2}={y\over 2}={z-k\over -1} \Rightarrow k=1,因此P\in L \Rightarrow P(2t,2t,-t+1),t\in \mathbb R \\ 將P代入E\Rightarrow 2t+ 4t-2(1-t)=14\Rightarrow t=2 \Rightarrow P(4,4,-1) \Rightarrow \overline{AP}= \sqrt{4^2+4^2 +2^2} =6\\,故選\bbox[red, 2pt]{(B)}
解答:x^2+y^2-4x-6y-12=0 \Rightarrow (x-2)^2 +(y-3)^2 =5^2 \\ 令\cases{x=5\cos \theta+2 \\ y=5\sin \theta+3} \Rightarrow 3x-4y=15\cos \theta-20\sin \theta-6 =25({3\over 5}\cos \theta-{4\over 5}\sin \theta)-6 \\ =25\sin(\theta+\alpha)-6 \Rightarrow |3x-4y|最大值=|-25-6|=31,故選\bbox[red, 2pt]{(C)}
解答:500\cdot 2^{n/2}\gt 10^5 \Rightarrow 2^{n/2 }\gt 200 \Rightarrow {n\over 2}\ge 8 \Rightarrow n\ge 16,故選\bbox[red, 2pt]{(D)}
解答:\cases{E法向量\vec n=(2,-4,5)\\ L方向向量\vec u=(-2,1,0)},假設 \vec n與\vec u夾角\phi \Rightarrow \cos \phi={\vec n\cdot \vec u\over |\vec n||\vec u|} ={-8\over 15}\\ \phi 與\theta互餘\Rightarrow \sin \theta =|\cos \phi|={8\over 15},故選\bbox[red, 2pt]{(A)}
解答:\cases{\triangle OBC/\triangle OAB=4\\ \triangle OAC/\triangle OAB=2} \Rightarrow {\triangle ABC\over \triangle OAB} =4+2-1=5,故選\bbox[red, 2pt]{(C)}
解答:\cases{P\in L_1 \Rightarrow P(-3+t,1+2t,1+2t) \\ Q\in L_2 \Rightarrow Q(s,1+2s,-5+2s)} \Rightarrow \overline{PQ}^2 =(s-t+3)^2 +(2s-2t)^2+(2s-2t-6)^2\\ 取x=s-t,則f(x)=\overline{PQ}^2 =(x+3)^2 +(2x)^2 +(2x-6)^2 = 9x^2-18x+45\\ \Rightarrow 當x=1時,\overline{PQ}^2有最小值9-18+45=36 \Rightarrow \overline{PQ}=6,故選\bbox[red, 2pt]{(B)}
貳、多重選擇題:
(一)共 10 題,題號自第 31 題至第 40 題,每題 4 分,計 40 分。
(二)每題 5 個選項各自獨立其中至少有 1 個選項是正確的,每題皆不倒扣,5 個選項全部
答對得該題全部分數,只錯 1 個選項可得一半分數,錯 2 個或 2 個以上選項不給分。
(三)請將正確答案以 2B 鉛筆劃記於答案卡內。
解答:f(x)=(2x-3)^{12} =\sum_{k=0}^{12}C^{12}_k(2x)^k(-3)^{12-k} \\(A)\bigcirc:常數項=(-3)^{12}=3^{12} \\(B)\times: 有x^{12},x^{11},\dots,x,常數項,共13類\\ (C)\bigcirc: x^9係數=C^{12}_9\cdot 2^9 \cdot(-3)^3 \\(D)\bigcirc: f(1)=(-1)^{12}=1 \\(E)\bigcirc: g(x)=f(2x)= (4x-3)^{12} \Rightarrow g(1)=1\\,故選\bbox[red, 2pt]{(ACDE)}解答:\begin{array}{} & X & Y &X^2 & Y^2 & XY\\\hline & 1& 1& 1& 1& 1\\ & 3 & 4& 9 & 16 & 12 \\ & 3 & 3& 9 & 9 & 9\\ & 4 & 2& 16 & 4& 8\\ & 5 & 3& 25& 9 & 15\\ & 5 & 2& 25& 4& 10\\ & 7 & 1& 49 &1 & 7 \\\hline \sum &28 & 16 & 134 & 44 & 62\end{array} \\(A)\times: \cases{\mu_x =28/7=4\\ \mu_y=16/7 } \Rightarrow \mu_X\gt \mu_Y \\(B) \times:\cases{E(X^2)=134/7 \Rightarrow \sigma_X=\sqrt{22\over 7} \\E(Y^2)=44/7 \Rightarrow \sigma_Y=2\sqrt{13}/7}\Rightarrow \sigma_X \gt \sigma_Y \\(C)\bigcirc: X越大Y越小\Rightarrow r\lt 0 \\(D) \times: 斜率變小,相關係數變得更小\\(E) \bigcirc: 斜率變正值(6\times 55-21\times 15 \gt 0)\\,故選\bbox[red, 2pt]{(CE)}
解答:\begin{bmatrix} 0 & 1\\ 1& 0\end{bmatrix} \begin{bmatrix} a\\ b\end{bmatrix} = \begin{bmatrix} 2\\ 1\end{bmatrix} \Rightarrow \cases{a=1\\ b=2} \\(A)\bigcirc: A(2,1),B(1,2)對稱於x=y \\ (B) \times:\overrightarrow{OA} \cdot \overrightarrow{OB} =(2,1)\cdot (1,2)=4\ne 0 \\(C) \times: B(1,2)在第一象限\\ (D) \bigcirc: \overline{OA}=\sqrt 5 =\overline{OB} \\(E) \times: \overleftrightarrow{AB}斜率={2-1\over 1-2}=-1 \ne -2\\,故選\bbox[red, 2pt]{(AD)}
解答:(A) \bigcirc: \cases{f(\pi/6)= \cos (\pi/6)=\sqrt 3/2 \\ g(\pi/6) =\cos(-\pi/6) =\sqrt 3/2} \\(B)\bigcirc: g(x)為f(x)的平移,兩者週期相同,f+g週期仍是2\pi \\ (C)\bigcirc: f+g=\cos x+\cos (x-\pi/3) =2 \cos(x-\pi/6)\cos (\pi/6) =\sqrt 3\cos(x-\pi/6)最大值=\sqrt 3 \\(D) \times: f-g週期仍為2\pi \\ (E)\times: f-g=\cos x-\cos (x-\pi/3) =-2\sin(x-\pi/6)\sin \pi/6=-\sin(x-\pi/6)最大值1\\,故選\bbox[red, 2pt]{(ABC)}
解答:(A) \bigcirc: a_{10}=S_{10}-S_9=10^2-9^2 =19 \\(B) \bigcirc: a_n= S_n-S_{n-1} =n^2 -(n-1)^2=2n-1為正奇數 \\ (C) \bigcirc: \Rightarrow a_n=2n-1 \Rightarrow 公差為2的等差數列 \\(D)\times: a_{10}+a_{11}+\cdots+ a_{20} =S_{20}-S_9=20^2-9^2=319\ne 300 \\ (E)\times: a_2+a_4 +\cdots +a_{20}= \sum_{k=1}^{10}a_{2k}= \sum_{k=1}^{10} 4k-1=4\cdot 55-10=210\\,故選\bbox[red, 2pt]{(ABC)}
解答:\begin{vmatrix}12 & 13\\ 22& 23 \end{vmatrix}+ 2\begin{vmatrix}11 & 13\\ 21& 23 \end{vmatrix} +3\begin{vmatrix}11 & 12\\ 21& 22 \end{vmatrix} =-10+2\cdot (-20)+3\cdot (-10)=-80\\(A)\times: 2應該為(-2) \\(B)\bigcirc: 正負號正確\\(C)\bigcirc: 剛好也是-10+2\cdot (-20)+3\cdot (-10)\\(D)\times: 其值為2+2\cdot 1+3\cdot 1,顯然錯誤\\ (E)\times: 正負號剛好相反\\,故選\bbox[red, 2pt]{(BC)}
解答:(A)\times: f(\alpha)=6 \Rightarrow 2^{-\alpha}=6 \Rightarrow -\alpha=\log_2 6 \Rightarrow \alpha\lt 0 \\(B)\times: f(2\alpha)= 2^{-2\alpha} =(2^{-\alpha})^2= 6^2=36 \ne 12 \\(C)\times: \cases{2^{-\alpha}=6 \Rightarrow 2^\alpha =1/6\\ 2^{-\beta}=12} \Rightarrow 2^{\alpha-\beta} =2 \ne{1\over 2} \\(D) \bigcirc:f({\alpha+\beta\over 2}) =2^{-(\alpha+ \beta)/2} =(2^{-(\alpha+\beta)})^{1/2} =\sqrt{6\cdot 12} \lt \sqrt{81}=9\\ (E)\bigcirc: \overline{AB}斜率={12-6\over \beta-\alpha} ={6\over 1}=6\\,故選\bbox[red, 2pt]{(DE)}
解答:(A)\bigcirc: 第2次只能是5,機率為{1\over 6} \\(B)\times: 期望值={1\over 36}(2\cdot 1+ 3\cdot 2+ 4\cdot 3+ 5\cdot 4+ 6\cdot 5+ 7\cdot 6+ 8\cdot 5+ 9\cdot 4+ 10\cdot 3+ 11\cdot 2+ 12\cdot 1) \\={253\over 36} \ne 6 \\(C) \bigcirc:{6\over 36}={1\over 6} \\(D)\bigcirc: 都是{3\over 36} \\ (E)\times: 乘積為奇數必須兩數皆為奇數,而乘積為偶數只兩數之一為偶數即可,因此偶數奇率較大\\,故選\bbox[red, 2pt]{(ACD)}
解答:(A) \times:{1\over 3}+{1\over 2}\lt 1 \\(B)\bigcirc: {2\over 3}+{1\over 2} \gt 1\\ (C)\times: -{1\over 2}+{2\over 3} \lt 1\\ (D)\bigcirc:\cos\theta+\sin \theta=\sqrt 2 \sin(\theta+45^\circ)可能\gt 1\\ (E) \bigcirc: \log 3+\log 5= \log 15 \gt 1\\,故選\bbox[red, 2pt]{(BDE)}
解答:(A) \bigcirc: \cases{\theta_3=60^\circ\\ \theta_6=120^\circ} \Rightarrow \sin\theta_3=\sin \theta_6={\sqrt 3\over 2} \\(B)\times: \theta_8 = 135^\circ \Rightarrow \cases{\cos 135^\circ=-1/\sqrt 2\\ \sin 135^\circ =1/\sqrt 2} \Rightarrow \cos \theta_8 \ne \sin \theta_8 \\(C) \times:\tan 135^\circ =-1\lt \cos 135^\circ=-1/\sqrt 2\\ (D)\bigcirc: 90^\circ\lt \theta_7 \lt \theta_8 \lt 180^\circ \Rightarrow \cos \theta_8\lt \cos \theta_7 \\(E)\times: 90^\circ\lt \theta_7 \lt \theta_8 \lt 180^\circ \Rightarrow \tan \theta_8 \gt \tan \theta_7\\,故選\bbox[red, 2pt]{(AD)}
======================= END ==========================
解題僅供參考,其他歷年試題及詳解
沒有留言:
張貼留言