網頁

2024年6月29日 星期六

113年香山高中教甄-數學詳解

新竹市立香山高級中學1 1 3 學年度教師甄選題目卷

科目:高中 數學科
▲選擇題: :(單選題 ,每題 4分 ,請就選項中選擇最適合的答案 )


解答:$$顯然P=B時,2\overline{PA}+3\overline{PB}=2\overline{AB}=20最小,故選\bbox[red, 2pt]{(D)}$$

解答:$$三個維度, 每個維度的向量正向或負向,共六個向量,故選\bbox[red, 2pt]{(B)}$$

解答:$$丟3次的期望值=3\times({1\over 6})^3 \\丟4次的期望值=4\times({1\over 6})^3 \times{5\over 6}\times C^3_2\\ 丟5次的期望值=5\times({1\over 6})^3 \times({5\over 6})^2\times C^4_2\\ 丟k次的期望值=k\times ({1\over 6})^3 \times({5\over 6})^{k-3}\times C^{k-1}_2 \\ 依題意,求n使得 \sum_{k=3}^nk\times ({1\over 6})^3 \times({5\over 6})^{k-3}\times C^{k-1}_2 \ge 3 \Rightarrow n=13,故選\bbox[red, 2pt]{(D)}$$

解答:$$(x+y+z)^2=x^2+y^2+z^2 +2(xy+yz+xz) \Rightarrow xy+yz+zx=-{1\over 2}\\ x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-(xy+yz+zx)) \Rightarrow xyz={1\over 6} \\因此x^4+y^4+z^4=(x+y+z)( x^3+y^3+ z^3)-( xy+yz+zx)(x^2+y^2 +z^2)\\ \qquad +xyz(x+y+z) =1\cdot 3-(-{1\over 2})\cdot 2+{1\over 6}\cdot 1=4+{1\over 6}={25\over 6},故選\bbox[red, 2pt]{(A)}$$



解答:$$對於這一類a,b,c完全對稱的算式,直接取a=b=c={1\over 3}\\ \Rightarrow ({1\over a}-1)( {1\over b}-1) ({1\over c}-1)= 2\cdot 2\cdot 2=8,故選\bbox[red, 2pt]{(C)}$$


解答:$$\mu_x=60代入y=30+{3\over 5}x \Rightarrow  y=66 \Rightarrow \mu_y=66\\ \cases{s=-{1\over 2}x+10 \\ t={1\over 6}y-1} \Rightarrow \cases{\sigma_s={1\over 2}\sigma_x \\ \sigma_t={1\over 6}\sigma_y \\ cov(s,t)=-{1\over 12}cov(x,y)\\ \mu_s=-{1\over 2}\mu_x+10=-20\\ \mu_t={1\over 6}\mu_y-1=10} \\\Rightarrow a={cov(s,t)\over \sigma^2_s  } ={-{1\over 12} cov(x,y) \over {1\over 4}\sigma^2_x   }=-{1\over 3}{cov(x,y) \over \sigma^2_x} =-{1\over 5}\\ 又s-t最適直線通過(\mu_s,\mu_t)= (-20,10) \Rightarrow 10=-{1\over 5}\cdot (-20)+b \Rightarrow b=6\\ \Rightarrow a+b=-{1\over 5}+6={29\over 5},故選\bbox[red, 2pt]{(A)}$$
解答:$$假設三角形三邊長為a,b,c,P到三邊的高為h_a,h_b,h_c,面積為A,則\\ 2A=ah_a+bh_b+ch_c \ge 3\sqrt[3]{abch_ah_bh_c} \Rightarrow 8A^3\ge 27abch_ah_bh_c \\ \Rightarrow {8A^3\over 27abc} \ge h_ah_bh_c \Rightarrow 等號成立於h_a={2A\over 3a},h_b={2A\over 3b}, h_c={2A\over 3c} \\ \Rightarrow {A\over 3}={ah_a\over 2} ={bh_b\over 2} ={ch_c\over 2} \Rightarrow \triangle PBC=\triangle PAC=\triangle PAB \Rightarrow P是重心,故選\bbox[red, 2pt]{(B)}$$


解答:$$\lim_{h\to 0} {f(1+h)\over 5h} =\lim_{h\to 0} {f'(1+h)\over 5} ={f'(1)\over 5}={-15\over 5}=-3,故選\bbox[red, 2pt]{(D)}$$


解答:

$$同時滿足\cases{a+b+c=16\\ ab+bc=64\\ a,b,c \in \mathbb N} \Rightarrow (a,b,c)=(1,8,7),(2,8,6),(3,8,5),(4,8,4)\\ 共四種不同形狀的四邊形,故選\bbox[red, 2pt]{(B)}$$
解答:$$\href{https://chu246.blogspot.com/2018/10/blog-post.html}{證明過程},故選\bbox[red, 2pt]{(B)}$$


解答:$$本題\bbox[cyan, 2pt]{(送分)}$$
解答:$$(A)\times: 3x-y=0為一平面\\ (B)\bigcirc: 2x-4=0為一平面\\ (C)\times: 空間中為一圓柱體\\ (D)\times: 圓心(0,0,0)至2x+3y-6z=36的距離={36\over 7}\gt 5(球半徑) \Rightarrow 兩圖形不相交\\,故選\bbox[red, 2pt]{(B)}$$
解答:$$2^n的個位數字為2,4,8,6,2,4,\dots,循環數為4,而2^{100}=2^{4\times 25}個位數字為6,故選\bbox[red, 2pt]{(D)}$$
解答:$$相當於求兩圖形\cases{y=f(x)=2^{-|x|} \\y=g(x)=|\log_2 x|}的交點數\\ 圖形 y=g(x)在x\in(0,1)遞減,而在x\in(1, \infty)遞增\\ 而y=f(x)在x\in (0,\infty)遞減,因此兩圖形有兩個交點,故選\bbox[red, 2pt]{(A)}$$
解答:$$\alpha=4-\beta \Rightarrow \alpha+\beta=4,故選\bbox[red, 2pt]{(C)}$$


解答:$$\int_{\pi/6}^{5\pi/6} (2-2\sin(3x))\,dx = \left. \left[ 2x+{2\over 3}\cos(3x) \right] \right|_{\pi/6}^{5\pi/6} ={10\pi\over 6}-{2\pi\over 6} ={4\over 3}\pi,故選\bbox[red, 2pt]{(C)}$$
解答:$$a={\sqrt 2\over 2}(1-i) \Rightarrow a^2=-i \Rightarrow a^4=-1 \Rightarrow a^8=1 \\ \Rightarrow \begin{vmatrix}1&a & a^2 \\-a^3 & 1&-a \\ a^2& a^3& 1 \end{vmatrix} =1-a^8=0,故選\bbox[red, 2pt]{(C)}$$





解答:$$本題\bbox[cyan, 2pt]{(送分)}$$

解答:$$此題相當於11,22,33,44的排列數,即{8!\over 2!\times 2!\times 2!\times 2!} =2520,故選\bbox[red, 2pt]{(A)}$$

解答:$${x^2\over 9}+{y^2\over 4}=1 \Rightarrow \cases{a=3\\ b=2} \Rightarrow c=\sqrt 5 \Rightarrow \cases{F_1(-\sqrt 5,0)\\ F_2(\sqrt 5,0)}\\ {x^2\over 4}-{y^2\over k}=1 \Rightarrow \cases{a=2\\ b=\sqrt k \\ c=\sqrt 5} \Rightarrow k=1 \Rightarrow {x^2\over 4}-y^2=1 \Rightarrow x^2=4y^2+4代入橢圓\\ \Rightarrow {1\over 9}(4y^2+4)+{y^2\over 4}=1 \Rightarrow y=\pm {2\over \sqrt 5} \Rightarrow \triangle PF_1F_2面積={1\over 2}\overline{F_1F_2}\cdot {2\over \sqrt 5} \\={1\over 2}\cdot 2\sqrt 5\cdot {2\over \sqrt 5}=2,故選\bbox[red, 2pt]{(D)}$$


解答:$$buckyball有20個六邊形及12個五角形,共有32個面、60個頂點、90個邊,故選\bbox[red, 2pt]{(C)}$$
解答:$$g(x)=xf(x)+1 \Rightarrow g'(x)=f(x)+ xf'(x) \Rightarrow g'(0)=f(0)=3,故選\bbox[red, 2pt]{(A)}$$
解答:$$本題\bbox[cyan, 2pt]{(送分)}$$
解答:$$f(a+x)= f(a)+ f(x)+2ax \Rightarrow f'(a+x)=0+f'(x)+2a \Rightarrow f'(a+0)=f'(0)+2a =2a \\ \Rightarrow f'(a)=2a,故選\bbox[red, 2pt]{(D)}$$
解答:$$(A-B)(A+B)=A^2+AB-BA-B^2, AB不一定等於BA,\\因此(A-B)(A+B)不一定等於A^2-B^2,故選\bbox[red, 2pt]{(A)}$$

==================== END ======================
解題僅供參考,教甄歷年試題及詳解

沒有留言:

張貼留言