國立鳳新高級中學 113 學年度第 1 次教師甄選
一、 計算證明題 (第 1 題至第 10 題每題 8 分, 第 11 題至第 12 題每題 10 分)
解答:
→OI=73+6+7→OA+63+6+7→OB+33+6+7→OC=716→OA+616→OB+316→OC⇒→OI⋅→BC=716→OA⋅(→BA+→AC)+616→OB⋅→BC+316→OC⋅→BC=716(12⋅32−12⋅62)+616(−12⋅72)+316(12⋅72)=−212
解答:f(θ)=sin2θ+2sinθ⇒f′(θ)=0⇒2cos2θ+2cosθ=0⇒4cos2θ+2cosθ−2=0⇒2(2cosθ−1)(cosθ+1)=0⇒{cosθ=1/2⇒θ=π/3cosθ=−1⇒θ=π,不合⇒f(π/3)=√32+√3=3√32⇒{最大值:3√3/2θ=π/3
解答:五個盒子挑一個(假設編號1)放2個球,其他盒子(編號2−5)各放1個球Case I 其他盒子中有兩個編號與小球相同:6×14=84Case II 其他盒子中有三個編號與小球相同:4×11=44共有5(84+44)=640
解答:
解答:
解答:f(θ)=sin2θ+2sinθ⇒f′(θ)=0⇒2cos2θ+2cosθ=0⇒4cos2θ+2cosθ−2=0⇒2(2cosθ−1)(cosθ+1)=0⇒{cosθ=1/2⇒θ=π/3cosθ=−1⇒θ=π,不合⇒f(π/3)=√32+√3=3√32⇒{最大值:3√3/2θ=π/3
解答:五個盒子挑一個(假設編號1)放2個球,其他盒子(編號2−5)各放1個球Case I 其他盒子中有兩個編號與小球相同:6×14=84Case II 其他盒子中有三個編號與小球相同:4×11=44共有5(84+44)=640
解答:
假設¯BC的中點D,及¯AD=高=h⇒¯BD=¯CD=√4−h2⇒¯CD=2√4−h2cos∠BPiC=cosπ=−1=→PiB⋅→PiC¯BPi⋅¯CPi⇒¯BPi⋅¯CPi=−→PiB⋅→PiC=−(→BA+→APi)⋅(→CA+→APi)⇒mi=¯APi2+¯BPi⋅¯CPi=(→APi⋅→APi)−(→BA+→APi)⋅(→CA+→APi)=−→BA⋅→CA−→BA⋅→APi−→APi⋅→CA=−→BA⋅→CA−(→BD+→DA)⋅→APi−→APi⋅(→CD+→DA)=−→BA⋅→CA−2→APi⋅→DA(∵→BD+→CD=0)=−→AB⋅→AC+2→APi⋅→AD=−¯AB⋅¯ACcos∠A+2h2=−4⋅4+4−(2√4−h2)22⋅2⋅2+2h2=4⇒m1+⋯+m100=100×4=400
另解假設∠A=90∘⇒¯AD=¯CD=¯DB=√2⇒mi=¯APi2+¯BPi⋅¯CPi=(2+¯DP12)+(√2−¯DPi)(√2+¯DPi)=4⇒100∑i=1mi=400解答:
假設E為¯AD與¯BC的交點,由於¯AD為∠A的角平分線,因此¯BE¯EC=¯AB¯AC=35⇒{¯BE=21/8¯CE=35/8又cos∠A=32+52−722⋅3⋅5=−12⇒∠A=120∘⇒∠BAE=60∘⇒cos∠BAE=12=32+¯AE2−(21/8)22⋅3⋅¯AE⇒¯AE=158∠ABE=∠ADC⇒△ABE∼△CDE(AAA)⇒¯AE¯BE=¯CE¯DE⇒¯DE=498⇒¯AD=158+498=8又¯BE¯AB=¯EI¯AI⇒¯AI=815⋅¯AE=1⇒¯ID¯AD=8−18=78
解答:動差母函數MX(t)=E(etX)=n∑k=0etkpkqn−k=(pet+q)n,p+q=1⇒M′X(t)=n(pet+q)n−1pet⇒M′X(0)=np⇒MX″
解答:\cases{k=(x+\sqrt{x^2-2024}) (y+\sqrt{y^2-2024}) =xy +x\sqrt{y^2-2024} +y\sqrt{x^2-204} +\sqrt{(x^2-2024) (y^2-2024)} \\ 2024=(x-\sqrt{x^2-2024}) (y-\sqrt{y^2-2024}) =xy -x\sqrt{y^2-2024} -y\sqrt{x^2-204} +\sqrt{(x^2-2024) (y^2-2024)}} \\ \Rightarrow \cases{兩式相乘:2024k=2024\cdot 2024 \Rightarrow k=2024\\兩式相減:k-2024=2(x\sqrt{y^2-2024 }+y \sqrt{x^2-2024} )\\} \Rightarrow x\sqrt{y^2-2024}=-y\sqrt{x^2-2024} \\ \Rightarrow \cases{x=y \Rightarrow x=\sqrt{2024} \\ x=-y \Rightarrow (x-\sqrt{x^2-2024}) (-x-\sqrt{x^2-2024}) =-2024\ne 2024,不合} \\ \Rightarrow x=y= \sqrt{2024} \Rightarrow 3x^2-2y^2+3x-3y-2023=x^2-2023=\bbox[red, 2pt]1
解答:f(x)= 5x^3-5(k+1)x^2 +(71k-1)x+1-66k =(x-1)(5x^2-5kx+66k-1) \\\qquad =(x-1)5(x-\alpha)(x-\beta) \Rightarrow 三根為1,\alpha,\beta \\ \Rightarrow f({66\over 5}) =({66\over 5}-1)(5 \cdot ({66\over 5})^2-66k+66k-1)=({66\over 5}-1)5({66\over 5}-\alpha)({66\over 5}-\beta) \\ \Rightarrow {4356 \over 5}-1 =5({66\over 5}-\alpha)({66\over 5}-\beta) \Rightarrow 4351 =19\times 229=(66-5\alpha) (66-5\beta) \\ \Rightarrow \cases{5\alpha-66=19\\ 5\beta-66=229} \Rightarrow \cases{\alpha= 17\\ \beta=59} 或\cases{\alpha=59\\ \beta=17} \Rightarrow k=\alpha+\beta= \bbox[red, 2pt]{76}
解答:
解答:動差母函數MX(t)=E(etX)=n∑k=0etkpkqn−k=(pet+q)n,p+q=1⇒M′X(t)=n(pet+q)n−1pet⇒M′X(0)=np⇒MX″
解答:\cases{k=(x+\sqrt{x^2-2024}) (y+\sqrt{y^2-2024}) =xy +x\sqrt{y^2-2024} +y\sqrt{x^2-204} +\sqrt{(x^2-2024) (y^2-2024)} \\ 2024=(x-\sqrt{x^2-2024}) (y-\sqrt{y^2-2024}) =xy -x\sqrt{y^2-2024} -y\sqrt{x^2-204} +\sqrt{(x^2-2024) (y^2-2024)}} \\ \Rightarrow \cases{兩式相乘:2024k=2024\cdot 2024 \Rightarrow k=2024\\兩式相減:k-2024=2(x\sqrt{y^2-2024 }+y \sqrt{x^2-2024} )\\} \Rightarrow x\sqrt{y^2-2024}=-y\sqrt{x^2-2024} \\ \Rightarrow \cases{x=y \Rightarrow x=\sqrt{2024} \\ x=-y \Rightarrow (x-\sqrt{x^2-2024}) (-x-\sqrt{x^2-2024}) =-2024\ne 2024,不合} \\ \Rightarrow x=y= \sqrt{2024} \Rightarrow 3x^2-2y^2+3x-3y-2023=x^2-2023=\bbox[red, 2pt]1
解答:f(x)= 5x^3-5(k+1)x^2 +(71k-1)x+1-66k =(x-1)(5x^2-5kx+66k-1) \\\qquad =(x-1)5(x-\alpha)(x-\beta) \Rightarrow 三根為1,\alpha,\beta \\ \Rightarrow f({66\over 5}) =({66\over 5}-1)(5 \cdot ({66\over 5})^2-66k+66k-1)=({66\over 5}-1)5({66\over 5}-\alpha)({66\over 5}-\beta) \\ \Rightarrow {4356 \over 5}-1 =5({66\over 5}-\alpha)({66\over 5}-\beta) \Rightarrow 4351 =19\times 229=(66-5\alpha) (66-5\beta) \\ \Rightarrow \cases{5\alpha-66=19\\ 5\beta-66=229} \Rightarrow \cases{\alpha= 17\\ \beta=59} 或\cases{\alpha=59\\ \beta=17} \Rightarrow k=\alpha+\beta= \bbox[red, 2pt]{76}
解答:
\cases{\Gamma_1:y=x^2+a\\ \Gamma_2: y=-x^2-a\\ \Gamma_3: y^2=x-a\\ \Gamma_4: y^2=-x-a} \Rightarrow \cases{\Gamma_1與\Gamma_3對稱直線L_1:x=y \\\Gamma_2與\Gamma_4對稱直線L_1 \\ \Gamma_1與\Gamma_4對稱直線L_2:x=-y \\ \Gamma_2與\Gamma_3對稱直線L_2 }\Rightarrow \cases{\Gamma_1與\Gamma_3的切點在L_1 \\\Gamma_2與\Gamma_4的切點在L_1 \\ \Gamma_1與\Gamma_4的切點在L_2 \\ \Gamma_2與\Gamma_3的切點在L_2} \\ \Rightarrow x^2-x+a=0恰有一根 \Rightarrow 1-4a=0 \Rightarrow a={1\over 4} \Rightarrow 切點\cases{(1/2,1/2)\\ (1/2, -1/2)\\ (-1/2,-1/2)\\ (-1/2,1/2)} \\ \Rightarrow 所圍面積=8\int_0^{1/2} (x^2+a-x)\,dx =8\cdot {1\over 24} =\bbox[red, 2pt]{1\over 3}
解答:\cases{L_1:{x-3\over 1} ={y\over 2} ={z+2\over -2} \Rightarrow 方向向量\vec u=(1,2,-2) \\L_2:{x\over 3} ={y-2\over 1} ={z+1\over -2} \Rightarrow 方向向量\vec v=(3,1,-2)} \Rightarrow \vec n= \vec u\times \vec v=(-2,-4,-5) \\ \Rightarrow 包含L_2的平面E: -2x-4(y-2)-5(z+1)=0 \Rightarrow 2x+4y+5z=3 \\ A(3,0,-2) \in L_1 \Rightarrow 兩歪斜線距離=d(A,E) ={7\over 3\sqrt 5} =\triangle PQR 的高 \Rightarrow S_{\triangle PQR} ={1\over \sqrt 3} \left( {7\over 3\sqrt 5}\right)^2 \\= \bbox[red, 2pt]{49\sqrt 3\over 135}
解答:
解答:\cases{L_1:{x-3\over 1} ={y\over 2} ={z+2\over -2} \Rightarrow 方向向量\vec u=(1,2,-2) \\L_2:{x\over 3} ={y-2\over 1} ={z+1\over -2} \Rightarrow 方向向量\vec v=(3,1,-2)} \Rightarrow \vec n= \vec u\times \vec v=(-2,-4,-5) \\ \Rightarrow 包含L_2的平面E: -2x-4(y-2)-5(z+1)=0 \Rightarrow 2x+4y+5z=3 \\ A(3,0,-2) \in L_1 \Rightarrow 兩歪斜線距離=d(A,E) ={7\over 3\sqrt 5} =\triangle PQR 的高 \Rightarrow S_{\triangle PQR} ={1\over \sqrt 3} \left( {7\over 3\sqrt 5}\right)^2 \\= \bbox[red, 2pt]{49\sqrt 3\over 135}
解答:
\cases{|z_1|=|z_1+z_2|=3 \\ |z_2-z_1|=3\sqrt 3} \Rightarrow \cases{z_1=3e^{i\theta} \\z_2=3e^{i(\theta+2\pi/3)}} \Rightarrow \cases{z_1\overline{z_2} =9e^{i(-2\pi/3)} \\ \overline{z_1} z_2 = 9e^{i(2\pi/3)}} \\ \Rightarrow \left( z_1\overline{z_2} \right)^{2000} +\left( \overline{z_1} z_2 \right)^{2000} =9^{2000} \left( e^{i(-4000\pi/3)} +e^{i(4000\pi/3)}\right) =3^{4000} \cdot 2\cos {4000\over 3}\pi =3^{4000} \cdot 2\cos {4\over 3}\pi \\=-3^{4000} \Rightarrow \log \left| \left( z_1\overline{z_2}\right)^{2000}+\left( \overline{z_1} z_2 \right)^{2000} \right| = \bbox[red, 2pt] {\log 3^{4000} =4000\log 3}
解答:柯西不等式: \\\left(({1\over n+1})^2+ ({1\over n+2})^2+ \cdots ({1\over n+n})^2 \right)(1^2+\cdots +1^2) \ge \left( {1\over n+1} +{1\over n+2}+ \cdots +{1\over 2n}\right)^2 \\ 而左式: \left(({1\over n+1})^2+ ({1 \over n+2})^2+ \cdots ({1\over n+n})^2 \right) n \\\qquad \qquad \le \left( {1\over n(n+1)}+ {1\over (n+1)(n+2)} + \cdots +{1\over (2n-1)(2n)}\right)n \\= \left( {1\over n}-{1\over n+1}+{1\over n+1}-{1\over n+2 }+ \cdots +{1\over 2n-1}-{1\over 2n} \right)n =\left( {1\over n}-{1\over 2n}\right)n ={1\over 2}\\ 因此\left( {1\over n+1} +{1\over n+2}+\cdots +{1\over 2n} \right)^2 \le {1\over 2} \Rightarrow {1\over n+1} +{1\over n+2}+\cdots +{1\over 2n}\le {\sqrt 2\over 2}, \bbox[red, 2pt]{故得證}
解答:柯西不等式: \\\left(({1\over n+1})^2+ ({1\over n+2})^2+ \cdots ({1\over n+n})^2 \right)(1^2+\cdots +1^2) \ge \left( {1\over n+1} +{1\over n+2}+ \cdots +{1\over 2n}\right)^2 \\ 而左式: \left(({1\over n+1})^2+ ({1 \over n+2})^2+ \cdots ({1\over n+n})^2 \right) n \\\qquad \qquad \le \left( {1\over n(n+1)}+ {1\over (n+1)(n+2)} + \cdots +{1\over (2n-1)(2n)}\right)n \\= \left( {1\over n}-{1\over n+1}+{1\over n+1}-{1\over n+2 }+ \cdots +{1\over 2n-1}-{1\over 2n} \right)n =\left( {1\over n}-{1\over 2n}\right)n ={1\over 2}\\ 因此\left( {1\over n+1} +{1\over n+2}+\cdots +{1\over 2n} \right)^2 \le {1\over 2} \Rightarrow {1\over n+1} +{1\over n+2}+\cdots +{1\over 2n}\le {\sqrt 2\over 2}, \bbox[red, 2pt]{故得證}
======================== END ====================
解題僅供參考,教甄其他試題及詳解
沒有留言:
張貼留言