Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

網頁

2024年8月23日 星期五

113年鳳新高中教甄-數學詳解

 國立鳳新高級中學 113 學年度第 1 次教師甄選

一、 計算證明題 (第 1 題至第 10 題每題 8 分, 第 11 題至第 12 題每題 10 分)

解答:

OI=73+6+7OA+63+6+7OB+33+6+7OC=716OA+616OB+316OCOIBC=716OA(BA+AC)+616OBBC+316OCBC=716(12321262)+616(1272)+316(1272)=212
解答:f(θ)=sin2θ+2sinθf(θ)=02cos2θ+2cosθ=04cos2θ+2cosθ2=02(2cosθ1)(cosθ+1)=0{cosθ=1/2θ=π/3cosθ=1θ=π,f(π/3)=32+3=332{:33/2θ=π/3
解答:(1)2(25)1Case I :6×14=84Case II :4×11=445(84+44)=640
解答:
¯BCD¯AD==h¯BD=¯CD=4h2¯CD=24h2cosBPiC=cosπ=1=PiBPiC¯BPi¯CPi¯BPi¯CPi=PiBPiC=(BA+APi)(CA+APi)mi=¯APi2+¯BPi¯CPi=(APiAPi)(BA+APi)(CA+APi)=BACABAAPiAPiCA=BACA(BD+DA)APiAPi(CD+DA)=BACA2APiDA(BD+CD=0)=ABAC+2APiAD=¯AB¯ACcosA+2h2=44+4(24h2)2222+2h2=4m1++m100=100×4=400
A=90¯AD=¯CD=¯DB=2mi=¯APi2+¯BPi¯CPi=(2+¯DP12)+(2¯DPi)(2+¯DPi)=4100i=1mi=400

解答:
E¯AD¯BC¯ADA¯BE¯EC=¯AB¯AC=35{¯BE=21/8¯CE=35/8cosA=32+5272235=12A=120BAE=60cosBAE=12=32+¯AE2(21/8)223¯AE¯AE=158ABE=ADCABECDE(AAA)¯AE¯BE=¯CE¯DE¯DE=498¯AD=158+498=8¯BE¯AB=¯EI¯AI¯AI=815¯AE=1¯ID¯AD=818=78
解答:MX(t)=E(etX)=nk=0etkpkqnk=(pet+q)n,p+q=1MX(t)=n(pet+q)n1petMX(0)=npMX
解答:\cases{k=(x+\sqrt{x^2-2024}) (y+\sqrt{y^2-2024}) =xy +x\sqrt{y^2-2024} +y\sqrt{x^2-204} +\sqrt{(x^2-2024) (y^2-2024)} \\ 2024=(x-\sqrt{x^2-2024}) (y-\sqrt{y^2-2024}) =xy -x\sqrt{y^2-2024} -y\sqrt{x^2-204} +\sqrt{(x^2-2024) (y^2-2024)}} \\ \Rightarrow \cases{兩式相乘:2024k=2024\cdot 2024 \Rightarrow k=2024\\兩式相減:k-2024=2(x\sqrt{y^2-2024 }+y \sqrt{x^2-2024}  )\\} \Rightarrow x\sqrt{y^2-2024}=-y\sqrt{x^2-2024} \\ \Rightarrow \cases{x=y \Rightarrow x=\sqrt{2024} \\ x=-y \Rightarrow (x-\sqrt{x^2-2024}) (-x-\sqrt{x^2-2024}) =-2024\ne 2024,不合} \\ \Rightarrow x=y= \sqrt{2024} \Rightarrow 3x^2-2y^2+3x-3y-2023=x^2-2023=\bbox[red, 2pt]1
解答:f(x)= 5x^3-5(k+1)x^2 +(71k-1)x+1-66k =(x-1)(5x^2-5kx+66k-1) \\\qquad =(x-1)5(x-\alpha)(x-\beta) \Rightarrow 三根為1,\alpha,\beta \\ \Rightarrow f({66\over 5}) =({66\over 5}-1)(5 \cdot  ({66\over 5})^2-66k+66k-1)=({66\over 5}-1)5({66\over 5}-\alpha)({66\over 5}-\beta) \\ \Rightarrow {4356 \over 5}-1 =5({66\over 5}-\alpha)({66\over 5}-\beta) \Rightarrow 4351 =19\times 229=(66-5\alpha) (66-5\beta) \\ \Rightarrow \cases{5\alpha-66=19\\ 5\beta-66=229} \Rightarrow \cases{\alpha= 17\\ \beta=59} 或\cases{\alpha=59\\ \beta=17} \Rightarrow k=\alpha+\beta= \bbox[red, 2pt]{76}
解答:

\cases{\Gamma_1:y=x^2+a\\ \Gamma_2: y=-x^2-a\\ \Gamma_3: y^2=x-a\\ \Gamma_4: y^2=-x-a} \Rightarrow  \cases{\Gamma_1與\Gamma_3對稱直線L_1:x=y \\\Gamma_2與\Gamma_4對稱直線L_1 \\ \Gamma_1與\Gamma_4對稱直線L_2:x=-y \\ \Gamma_2與\Gamma_3對稱直線L_2 }\Rightarrow \cases{\Gamma_1與\Gamma_3的切點在L_1 \\\Gamma_2與\Gamma_4的切點在L_1 \\ \Gamma_1與\Gamma_4的切點在L_2 \\ \Gamma_2與\Gamma_3的切點在L_2} \\ \Rightarrow x^2-x+a=0恰有一根 \Rightarrow 1-4a=0 \Rightarrow a={1\over 4} \Rightarrow 切點\cases{(1/2,1/2)\\ (1/2, -1/2)\\ (-1/2,-1/2)\\ (-1/2,1/2)} \\ \Rightarrow 所圍面積=8\int_0^{1/2} (x^2+a-x)\,dx =8\cdot {1\over 24} =\bbox[red, 2pt]{1\over 3}
解答:\cases{L_1:{x-3\over 1} ={y\over 2} ={z+2\over -2} \Rightarrow 方向向量\vec u=(1,2,-2) \\L_2:{x\over 3} ={y-2\over 1} ={z+1\over -2} \Rightarrow 方向向量\vec v=(3,1,-2)} \Rightarrow \vec n= \vec u\times \vec v=(-2,-4,-5) \\ \Rightarrow 包含L_2的平面E: -2x-4(y-2)-5(z+1)=0 \Rightarrow 2x+4y+5z=3 \\ A(3,0,-2) \in L_1 \Rightarrow 兩歪斜線距離=d(A,E) ={7\over 3\sqrt 5} =\triangle PQR 的高 \Rightarrow S_{\triangle PQR} ={1\over \sqrt 3} \left( {7\over 3\sqrt 5}\right)^2 \\= \bbox[red, 2pt]{49\sqrt 3\over 135}
解答:

\cases{|z_1|=|z_1+z_2|=3 \\ |z_2-z_1|=3\sqrt 3} \Rightarrow \cases{z_1=3e^{i\theta} \\z_2=3e^{i(\theta+2\pi/3)}} \Rightarrow \cases{z_1\overline{z_2} =9e^{i(-2\pi/3)} \\ \overline{z_1} z_2 = 9e^{i(2\pi/3)}} \\ \Rightarrow \left( z_1\overline{z_2} \right)^{2000} +\left( \overline{z_1} z_2 \right)^{2000} =9^{2000} \left( e^{i(-4000\pi/3)} +e^{i(4000\pi/3)}\right) =3^{4000} \cdot 2\cos {4000\over 3}\pi =3^{4000} \cdot 2\cos {4\over 3}\pi \\=-3^{4000} \Rightarrow \log \left| \left( z_1\overline{z_2}\right)^{2000}+\left( \overline{z_1} z_2 \right)^{2000} \right| = \bbox[red, 2pt] {\log 3^{4000} =4000\log 3}
解答:柯西不等式: \\\left(({1\over n+1})^2+ ({1\over n+2})^2+ \cdots ({1\over n+n})^2  \right)(1^2+\cdots +1^2) \ge \left( {1\over n+1} +{1\over n+2}+ \cdots +{1\over 2n}\right)^2 \\ 而左式: \left(({1\over n+1})^2+ ({1 \over n+2})^2+ \cdots ({1\over n+n})^2 \right) n \\\qquad \qquad \le \left( {1\over n(n+1)}+ {1\over (n+1)(n+2)} + \cdots +{1\over (2n-1)(2n)}\right)n \\= \left( {1\over n}-{1\over n+1}+{1\over n+1}-{1\over n+2 }+ \cdots +{1\over 2n-1}-{1\over 2n} \right)n =\left( {1\over n}-{1\over 2n}\right)n ={1\over 2}\\ 因此\left( {1\over n+1} +{1\over n+2}+\cdots +{1\over 2n} \right)^2 \le {1\over 2} \Rightarrow {1\over n+1} +{1\over n+2}+\cdots +{1\over 2n}\le {\sqrt 2\over 2}, \bbox[red, 2pt]{故得證}

======================== END ====================

解題僅供參考,教甄其他試題及詳解






沒有留言:

張貼留言