臺北市立內湖高級工業職業學校 113 學年度正式教師甄選
科別: 數學科 範圍: 數學科專業知能 考試時間: 100 分鐘
壹、 填充題 (每題 7 分, 共 70 分;請在答案卷相對應的題號欄中寫下答案。 )
解答:x5+2x2+x+3=x(x4+x−1)+x2+2x+3⇒(x5+2x2+x+3)2=p(x)(x4+x−1)+(x2+2x+3)2而(x2+2x+3)2=(x4+x−1)+4x3+10x2+11x+10⇒餘式為4x3+10x2+11x+10解答:令{α=3√n+1β=3√n−1⇒α−β=α3−β3α2+αβ+β2=23√(n+1)2+3√n2−1+3√(n−1)2=2an⇒1an=12(α−β)=12(3√n+1−3√n−1)⇒1a1+1a3+1a5+⋯+1a4095=12((3√2−0)+(3√4−3√2)+(3√6−3√4)+⋯+(3√4096−3√4094))=123√4096=12212/3=12⋅16=8
解答:¯AD2=|→AD|2=|→AB+→BC+→CD|2=|→AB|2+|→BC|2+|→CD|2+2(→AB⋅→BC+→BC⋅→CD+→CD⋅→AB)=32+22+12+2(−→BA⋅→BC−→CB⋅→CD+→CD⋅→AB)=14+2(−cos120∘¯BA⋅¯BC−cos120∘¯BC⋅¯CD+cos60∘¯CD⋅¯AB)=14+2(12⋅3⋅2+12⋅2⋅1+12⋅1⋅3)=14+(6+2+3)=25⇒¯AD=√25=5
解答:兩人比賽有三種情形,兩得分總和為6,平均每局得2分假設高三有n位學生,高二與高三學生比賽Cn+32次,得分總和為2Cn+32因此2Cn+32−20=np⇒n2+(5−p)n−14=0⇒p=n2−14n+5⇒p=n+5−14n⇒14n∈N⇒n=1,2,7,14⇒n=14⇒p=18
解答:(a−3)2+(b−3)2+(c−3)2+(d−3)2=4⇒(a−3,b−3,c−3,d−3)={(±2,0,0,0)(±1,±1,±1,±1)⇒(a,b,c,d)={(5,3,3,3)⇒排列數4(1,3,3,3)⇒排列數4(4,4,4,4)⇒排列數1(2,4,4,4)⇒排列數4(2,2,4,4)⇒排列數6(2,2,2,4)⇒排列數4(2,2,2,2)⇒排列數1⇒總排列數24⇒機率=2464=154
解答:t=10675⇒⌊10202510675+2025⌋=⌊t3t+2025⌋=⌊t2−2025t+20252−20253t+2025⌋=⌊20252−20253t+2025⌋ mod 1000=624(∵
解答:\Gamma: \begin{bmatrix} x'\\ y'\end{bmatrix}= \begin{bmatrix} \cos 45^\circ& -\sin 45^\circ \\ \sin 45^\circ & \cos 45^\circ\end{bmatrix}\begin{bmatrix} x\\y\end{bmatrix} =\begin{bmatrix} {\sqrt 2\over 2}(x-y) \\ {\sqrt 2\over 2}(x+y)\end{bmatrix} \Rightarrow \cases{x=(x'+y')/\sqrt 2\\ y=(y'-x')/\sqrt 2} \\ \Rightarrow {({x'+y'\over \sqrt 2})^2\over 5}+ {({y'-x'\over \sqrt 2})^2 \over 10}=1 \Rightarrow 3x'^2+2x'y'+ 3y'-20=0 \Rightarrow \bbox[red, 2pt]{3x^2+2xy+3y^2-20=0}
解答:
\cases{-1\le x\le 0:A=\pi \int_{-1}^0 (1-x^2)^2\,dx ={8\over 15}\pi\\ 0\le x\le 1:B= \pi\int_0^1(-1-x)^2\,dx = {7\over 3}\pi \\1\le x\le 2: C=\pi \int_1^2 \left((-1-x)^2-(1-x^2)^2 \right)\,dx ={19\over 5}\pi } \Rightarrow A+B+C={100\over 15}\pi =\bbox[red, 2pt]{{20\over 3}\pi}
解答:假設x^7-1=0的七個根為1,x_1,x_2,\dots,x_6, \\則x_1,x_2, \dots, x_6為f(x)=x^6+x^5+\cdots +x+1=0的六根 \\ \Rightarrow f(x)=(x-x_1)(x-x_2)\cdots (x-x_6)\\ \Rightarrow f(1)=7=(1-x_1)(1-x_2) \cdots (1-x_6) =\overline{AB} \cdot \overline{AC}\cdots\overline{AG}\\ 又\overline{AB}^2+\overline{AC}^2+ \cdots+ \overline{AG}^2\\ =(\overrightarrow{AO} + \overrightarrow{OB}) \cdot (\overrightarrow{AO} + \overrightarrow{OB}) + (\overrightarrow{AO} + \overrightarrow{OC}) \cdot (\overrightarrow{AO} + \overrightarrow{OC}) + \cdots +(\overrightarrow{AO} + \overrightarrow{OG}) \cdot (\overrightarrow{AO} + \overrightarrow{OG}) \\= (2+2\overrightarrow{AO} \cdot \overrightarrow{OB})+ (2+2\overrightarrow{AO} \cdot \overrightarrow{OC}) +\cdots +(2+2\overrightarrow{AO} \cdot \overrightarrow{OG}) \\=12+ 2\overrightarrow{AO} \cdot (\overrightarrow{OB} +\overrightarrow{OC} + \cdots+ \overrightarrow{OG}) =12 + 2\overrightarrow{AO} \cdot (\overrightarrow{OA}+\overrightarrow{OB} +\overrightarrow{OC} + \cdots+ \overrightarrow{OG} -\overrightarrow{OA}) \\=12+2\overrightarrow{AO} \cdot \overrightarrow{AO} =14 \\因此(\overline{AB}\cdot \overline{AC} \cdots \overline{AG}) (\overline{AB}^2+ \cdots +\overline{AG}^2)= 7\times 14= \bbox[red, 2pt]{98}
解答:假設x^7-1=0的七個根為1,x_1,x_2,\dots,x_6, \\則x_1,x_2, \dots, x_6為f(x)=x^6+x^5+\cdots +x+1=0的六根 \\ \Rightarrow f(x)=(x-x_1)(x-x_2)\cdots (x-x_6)\\ \Rightarrow f(1)=7=(1-x_1)(1-x_2) \cdots (1-x_6) =\overline{AB} \cdot \overline{AC}\cdots\overline{AG}\\ 又\overline{AB}^2+\overline{AC}^2+ \cdots+ \overline{AG}^2\\ =(\overrightarrow{AO} + \overrightarrow{OB}) \cdot (\overrightarrow{AO} + \overrightarrow{OB}) + (\overrightarrow{AO} + \overrightarrow{OC}) \cdot (\overrightarrow{AO} + \overrightarrow{OC}) + \cdots +(\overrightarrow{AO} + \overrightarrow{OG}) \cdot (\overrightarrow{AO} + \overrightarrow{OG}) \\= (2+2\overrightarrow{AO} \cdot \overrightarrow{OB})+ (2+2\overrightarrow{AO} \cdot \overrightarrow{OC}) +\cdots +(2+2\overrightarrow{AO} \cdot \overrightarrow{OG}) \\=12+ 2\overrightarrow{AO} \cdot (\overrightarrow{OB} +\overrightarrow{OC} + \cdots+ \overrightarrow{OG}) =12 + 2\overrightarrow{AO} \cdot (\overrightarrow{OA}+\overrightarrow{OB} +\overrightarrow{OC} + \cdots+ \overrightarrow{OG} -\overrightarrow{OA}) \\=12+2\overrightarrow{AO} \cdot \overrightarrow{AO} =14 \\因此(\overline{AB}\cdot \overline{AC} \cdots \overline{AG}) (\overline{AB}^2+ \cdots +\overline{AG}^2)= 7\times 14= \bbox[red, 2pt]{98}
解答:
取\cases{O(0,0,0) \\P(0,0,2) \\Q(5,0,0) \\A(5,5,0) \\B(5,-5,0) \\C(-5,-5,0)} \Rightarrow \cases{\overrightarrow{PA} =(5,5,-2) \\\overrightarrow{PB} =(5, -5,-2) \\\overrightarrow{PC} =(-5, -5,-2) } \Rightarrow \cases{\vec u= \overrightarrow{PA}\times \overrightarrow{PB} =(-20,0, -50)\\ \vec v= \overrightarrow{PB} \times \overrightarrow{PC} = (0,20,-50)} \\ \Rightarrow -\cos \alpha =-{\vec u\cdot \vec v \over |\vec u|| \vec v|} =-{2500\over 2900} = \bbox[red, 2pt]{-{25\over 29}}
貳、 計算證明題(每題 10 分, 共 30 分;請在答案卷相對應的題號中作答,並請寫下完整的計算或證明過程,否則不予計分。 )
解答:y^2=2x \Rightarrow 焦點F({1\over 2}, 0) \Rightarrow L: y=m(x-{1\over 2}) 代入拋物線方程式 \Rightarrow m^2(x-{1\over 2})^2=2x \\ \Rightarrow m^2x^2-(m^2+ 2)x+{1\over 4}m^2 =0 \Rightarrow 兩交點\cases{A(\alpha, \sqrt{2\alpha}) \\ B(\beta,-\sqrt{2\beta})}\Rightarrow \alpha \beta={1\over4} \\ \Rightarrow \overrightarrow{OA} \cdot \overrightarrow{OB} =(\alpha,\sqrt{2\alpha}) \cdot (\beta,-\sqrt{2\beta}) =\alpha\beta-2\sqrt{\alpha\beta} ={1\over 4}-2\cdot {1\over 2} =\bbox[red,2pt]{-{3\over 4}}
解答:f(x)={1\over x^2} \Rightarrow f'(x)=-{2\over x^3} \\ 假設P(a,f(a)) =(a,{1\over a^2}),則L:y=-{2\over a^3} (x-a)+{1\over a^2} \Rightarrow \cases{A({3\over 2}a,0) \\B(0,{3\over a^2})} \Rightarrow \overline{AB} =\sqrt{ {9\over 4}a^2+{9\over a^4}} \\ 取g(a) ={9\over 4}a^2+{9\over a^4} \Rightarrow g'(a)=0 \Rightarrow a=\sqrt 2 \Rightarrow \bbox[red, 2pt]{\cases{\overline{AB} ={3\sqrt 3\over 2} \\P(\sqrt 2,{1\over 2})}}
解答:\sum_{k=1}^{90} 2k\sin 2k^\circ=2(1\cdot \sin 2^\circ +2\sin 4^\circ +\cdots +44\sin 88^\circ+ 45\sin 90^\circ+ 46\sin 92^\circ+\cdots +89\sin 178^\circ+ 90\sin 180^\circ) \\=2(1\cdot \sin 2^\circ +2\sin 4^\circ+ \cdots +44\sin 88^\circ +45\sin 90^\circ+ 46 \sin 88^\circ+\cdots +88 \sin 4^\circ+89\sin 2^\circ+ 0) \\= 2(90\sin 2^\circ +90\sin 4^\circ +\cdots +90\sin 88^\circ)+ 2\cdot 45\sin 90^\circ \\=180(\sin 2^\circ+ \sin 4^\circ+ \cdots +\sin 88^\circ) +90 \\={90\over \sin 1^\circ}(2\sin 2^\circ \sin 1^\circ +2\sin 4^\circ \sin 1^\circ +\cdots +2\sin 88^\circ \sin 1^\circ)+90 \\={90\over \sin 1^\circ}( \cos 1^\circ-\cos 3^\circ +\cos 3-\cos 5^\circ +\cdots +\cos 87^\circ-\cos 89^\circ)+90 \\={90\over \sin 1^\circ} (\cos 1^\circ-\cos 89^\circ)+ 90 ={90\over \sin 1^\circ} (\cos 1^\circ-\sin 1^\circ)+ 90 =90\cot 1^\circ \\ \Rightarrow \sum_{k=1}^{90} 2k\sin 2k^\circ的平均值={90\cot 1^\circ \over 90} =\cot 1^\circ. \bbox[red, 2pt]{故得證}
解答:f(x)={1\over x^2} \Rightarrow f'(x)=-{2\over x^3} \\ 假設P(a,f(a)) =(a,{1\over a^2}),則L:y=-{2\over a^3} (x-a)+{1\over a^2} \Rightarrow \cases{A({3\over 2}a,0) \\B(0,{3\over a^2})} \Rightarrow \overline{AB} =\sqrt{ {9\over 4}a^2+{9\over a^4}} \\ 取g(a) ={9\over 4}a^2+{9\over a^4} \Rightarrow g'(a)=0 \Rightarrow a=\sqrt 2 \Rightarrow \bbox[red, 2pt]{\cases{\overline{AB} ={3\sqrt 3\over 2} \\P(\sqrt 2,{1\over 2})}}
解答:\sum_{k=1}^{90} 2k\sin 2k^\circ=2(1\cdot \sin 2^\circ +2\sin 4^\circ +\cdots +44\sin 88^\circ+ 45\sin 90^\circ+ 46\sin 92^\circ+\cdots +89\sin 178^\circ+ 90\sin 180^\circ) \\=2(1\cdot \sin 2^\circ +2\sin 4^\circ+ \cdots +44\sin 88^\circ +45\sin 90^\circ+ 46 \sin 88^\circ+\cdots +88 \sin 4^\circ+89\sin 2^\circ+ 0) \\= 2(90\sin 2^\circ +90\sin 4^\circ +\cdots +90\sin 88^\circ)+ 2\cdot 45\sin 90^\circ \\=180(\sin 2^\circ+ \sin 4^\circ+ \cdots +\sin 88^\circ) +90 \\={90\over \sin 1^\circ}(2\sin 2^\circ \sin 1^\circ +2\sin 4^\circ \sin 1^\circ +\cdots +2\sin 88^\circ \sin 1^\circ)+90 \\={90\over \sin 1^\circ}( \cos 1^\circ-\cos 3^\circ +\cos 3-\cos 5^\circ +\cdots +\cos 87^\circ-\cos 89^\circ)+90 \\={90\over \sin 1^\circ} (\cos 1^\circ-\cos 89^\circ)+ 90 ={90\over \sin 1^\circ} (\cos 1^\circ-\sin 1^\circ)+ 90 =90\cot 1^\circ \\ \Rightarrow \sum_{k=1}^{90} 2k\sin 2k^\circ的平均值={90\cot 1^\circ \over 90} =\cot 1^\circ. \bbox[red, 2pt]{故得證}
沒有留言:
張貼留言