Loading [MathJax]/jax/output/CommonHTML/jax.js

網頁

2025年3月31日 星期一

111年台大碩士班-線性代數C詳解

 國立臺灣大學111學年度碩士班招生考試

科目:線性代數(C)


解答:(a)false:A=[0010]AT=AA is symmetric, but it cannot be diagonalizable(b)false:A=[1111]AT=AA is symmetric, but det(A)=0A1does not exist(c)true:{AT=AAx1=λ1x1Ax2=λ2x2λ1x1,x2=λ1x1,x2=Ax1,x2=x1,ATx2=x1,Ax2=x1,λ2x2=λ2x2,x2λ1x1,x2=λ2x1,x2(λ1λ2)x1,x2=0x1x2(λ1λ2)(d)true:from (c), they are othogonal and then linearly independent
解答:A=[12201021100000100000]B=rref(A)=[10110011/21/200000100000]Bx=0{x1+x3x4=0x2+x3/2+x3/2=0x5=0x=[x3+x4(x3+x4)/2x3x40]=x3[11/2100]+x4[11/2010]null space ={a[11/2100]+b[11/2010]a,bR}From the nonzero rows of the reduced matrix, we have  row space =Span{[12201],[02110],[00001]}From the pivot columns of the reduced matrix, we have column space =Span {[1000],[2200],[1010]}Finally, from rref(A), we have rank(A)=3



解答:{x1+x3=qx2+2x4=0x1+2x3+3x4=02x2+3x3+px4=3[101001021023023p][x1x2x3x4]=[q003](a) A=[101001021023023p]det(A)=p13p13(b) p=13{x1+x3=qx2+2x4=0x1+2x3+3x4=02x2+3x3+13x4=3{x3+3x4=q3x3+9x4=3no solution: p=13,q1(c)  infinity solutions 13=39=q3q=1p13,q=1

解答:Let {x1=[123]x2=[314]b=[101]{Ax1=bAx2=bAx1+Ax2=A(x1+x2)=2bA(x1+x22)=banother solution x3=x1+x22=[23/27/2]
解答:λ is an eigenvalue of AAx=λxA2x=λAx=λ2xA2x=λ2xλ2 is an eigenvalue of A2QED

解答:A=[21215]=[4311][1002][1314]A10=[4311][11000210][1314]=[4321012(1210)12103+4210]=[30681227610234093]

解答:2x1x3+x4=0(x1,x2,x3,x4)=(x1,x2,2x1+x4,x4)=x1(1,0,2,0)+x2(0,1,0,0)+x4(0,0,1,1){(1,0,2,0),(0,1,0,0),(0,0,1,1)} is a basis for WApplying Gram-Schmidt process, we have the orthonormal basis: {(55,0,255,0),(0,1,0,0),(3015,0,3030,306)}

解答:(a) ˆyi=C+D2xiE=(ˆyiyi)2=(C+D2xiyi)2=(C2+D222xi+y2i+2CD2xi2Dyi2xi2Cyi)EC=0(C+D2xiyi)=0nC+D2xi=yiED=0(D22xi+C2xiyi2xi)=0C2xi+D22xi=yi2xi[n2xi2xi22xi][CD]=[yiyi2xi][37721][CD]=[1014][CD]=[37721]1[1014]=[321212314][1014]=[82]{C=8D=2(b) y=822x{x=0y=6x=1y=4x=2y=0 The best curve  is y=822x not y=0
解答:(a) A=[4/51/101/59/10](b) A=[11211][710001][23132323]A=[11211][(710)001][23132323]=[11211][0001][23132323]=[13132323]limkAk[10]=[13132323][10]=[1323]

====================== END ==========================
解題僅供參考,其他碩士班試題及詳解

沒有留言:

張貼留言