國立臺灣大學111學年度碩士班招生考試
科目:線性代數(C)
解答:(a)false:A=[0010]⇒AT=A⇒A is symmetric, but it cannot be diagonalizable(b)false:A=[1111]⇒AT=A⇒A is symmetric, but det(A)=0⇒A−1does not exist(c)true:{AT=AAx1=λ1x1Ax2=λ2x2⇒λ1⟨x1,x2⟩=⟨λ1x1,x2⟩=⟨Ax1,x2⟩=⟨x1,ATx2⟩=⟨x1,Ax2⟩=⟨x1,λ2x2⟩=λ2⟨x2,x2⟩⇒λ1⟨x1,x2⟩=λ2⟨x1,x2⟩⇒(λ1−λ2)⟨x1,x2⟩=0⇒x1⊥x2(λ1≠λ2)(d)true:from (c), they are othogonal and then linearly independent
解答:A=[12201021100000100000]⇒B=rref(A)=[101−10011/21/200000100000]Bx=0⇒{x1+x3−x4=0x2+x3/2+x3/2=0x5=0⇒x=[−x3+x4−(x3+x4)/2x3x40]=x3[−1−1/2100]+x4[1−1/2010]⇒null space ={a[−1−1/2100]+b[1−1/2010]∣a,b∈R}From the nonzero rows of the reduced matrix, we have row space =Span{[12201],[02110],[00001]}From the pivot columns of the reduced matrix, we have column space =Span {[1000],[2200],[1010]}Finally, from rref(A), we have rank(A)=3
解答:{x1+x3=qx2+2x4=0x1+2x3+3x4=02x2+3x3+px4=3⇒[101001021023023p][x1x2x3x4]=[q003](a) A=[101001021023023p]⇒det(A)=p−13⇒p≠13(b) p=13⇒{x1+x3=qx2+2x4=0x1+2x3+3x4=02x2+3x3+13x4=3⇒{x3+3x4=−q3x3+9x4=3⇒no solution: p=13,q≠−1(c) infinity solutions ⇒13=39=−q3⇒q=−1⇒p−13,q=−1

解答:Let {x1=[123]x2=[314]b=[10−1]⇒{Ax1=bAx2=b⇒Ax1+Ax2=A(x1+x2)=2b⇒A(x1+x22)=b⇒another solution x3=x1+x22=[23/27/2]
解答:λ is an eigenvalue of A⇒Ax=λx⇒A2x=λAx=λ2x⇒A2x=λ2x⇒λ2 is an eigenvalue of A2QED

解答:A=[−212−15]=[4311][1002][1−3−14]⇒A10=[4311][11000210][1−3−14]=[4−3⋅210−12(1−210)1−210−3+4⋅210]=[−306812276−10234093]
解答:2x1−x3+x4=0⇒(x1,x2,x3,x4)=(x1,x2,2x1+x4,x4)=x1(1,0,2,0)+x2(0,1,0,0)+x4(0,0,1,1)⇒{(1,0,2,0),(0,1,0,0),(0,0,1,1)} is a basis for WApplying Gram-Schmidt process, we have the orthonormal basis: {(√55,0,2√55,0),(0,1,0,0),(−√3015,0,√3030,√306)}
解答:(a) A=[4/51/101/59/10](b) A=[−11211][710001][−23132323]⇒A∞=[−11211][(710)∞001∞][−23132323]=[−11211][0001][−23132323]=[13132323]⇒limk→∞Ak[10]=[13132323][10]=[1323]
解題僅供參考,其他碩士班試題及詳解
沒有留言:
張貼留言