國立臺灣大學111學年度碩士班招生考試
科目:線性代數(C)
解答:(a)\bbox[red, 2pt]{\text{false}}:A=\begin{bmatrix}0& 0\\1& 0 \end{bmatrix} \Rightarrow A^T=A \Rightarrow A \text{ is symmetric, but it cannot be diagonalizable} \\(b)\bbox[red, 2pt]{\text{false}}:A=\begin{bmatrix}1& 1\\1& 1 \end{bmatrix} \Rightarrow A^T=A \Rightarrow A \text{ is symmetric, but }\det(A)=0 \Rightarrow A^{-1} \text{does not exist} \\(c)\bbox[red, 2pt]{\text{true}}:\cases{A^T=A\\ Ax_1=\lambda_1 x_1 \\ Ax_2 =\lambda_2 x_2} \Rightarrow \lambda_1 \langle x_1, x_2\rangle =\langle \lambda_1 x_1, x_2\rangle =\langle Ax_1, x_2\rangle =\langle x_1, A^Tx_2\rangle =\langle x_1, Ax_2\rangle \\\qquad =\langle x_1, \lambda_ 2x_2\rangle =\lambda_2 \langle x_2, x_2 \rangle \Rightarrow \lambda_1\langle x_1, x_2\rangle =\lambda_2\langle x_1, x_2\rangle \Rightarrow (\lambda_1-\lambda_2) \langle x_1, x_2\rangle =0 \Rightarrow x_1\bot x_2 (\lambda_1\ne \lambda_2)\\ (d)\bbox[red, 2pt]{\text{true}}: \text{from (c), they are othogonal and then linearly independent}
解答:A=\begin{bmatrix}1 &2 &2 &0 &1 \\0 &2 & 1 & 1 &0 \\0 & 0 &0 &0 & 1 \\0 & 0 & 0 &0 &0 \end{bmatrix} \Rightarrow B=rref(A)= \begin{bmatrix}1 &0 &1 &-1 &0 \\0 &1 & 1/2 & 1/2 &0 \\0 & 0 &0 &0 & 1 \\0 & 0 & 0 &0 &0 \end{bmatrix}\\Bx=0 \Rightarrow \cases{x_1+x_3-x_4=0\\ x_2+x_3/2+x_3/2=0\\ x_5=0} \Rightarrow x= \begin{bmatrix} -x_3+x_4\\ -(x_3+x_4)/2\\x_3\\x_4 \\ 0\end{bmatrix} =x_3\begin{bmatrix} -1\\-1/2\\1\\0 \\0\end{bmatrix} +x_4 \begin{bmatrix} 1\\-1/2\\0\\1 \\0 \end{bmatrix} \\ \Rightarrow \bbox[red, 2pt]{\text{null space =}\left\{ a\begin{bmatrix} -1\\-1/2 \\1\\0 \\0 \end{bmatrix} +b \begin{bmatrix} 1\\-1/2\\0\\1 \\0 \end{bmatrix} \mid a,b \in \mathbb R\right\}}\\\text{From the nonzero rows of the reduced matrix, we have } \bbox[red, 2pt]{\text{ row space =Span}\left\{ \begin{bmatrix} 1\\2\\2\\0 \\1\end{bmatrix}, \begin{bmatrix} 0\\2\\1\\1\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0 \\1\end{bmatrix}\right\}} \\\text{From the pivot columns of the reduced matrix, we have} \bbox[red, 2pt]{\text{ column space =Span }\left\{ \begin{bmatrix} 1\\0\\0 \\0 \end{bmatrix}, \begin{bmatrix} 2\\2\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}\right\}} \\ \text{Finally, from rref(A), we have }\bbox[red, 2pt]{rank(A)=3}
解答:\cases{x_1+x_3=q\\ x_2+2x_4=0\\ x_1+2x_3+3x_4=0\\ 2x_2+3x_3+ px_4 =3} \Rightarrow \begin{bmatrix} 1& 0& 1& 0\\ 0& 1& 0& 2\\ 1& 0& 2& 3\\ 0& 2& 3& p \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4\end{bmatrix}= \begin{bmatrix} q\\ 0\\ 0\\ 3\end{bmatrix} \\ \textbf{(a) }A=\begin{bmatrix} 1& 0& 1& 0\\ 0& 1& 0& 2\\ 1& 0& 2& 3\\ 0& 2& 3& p \end{bmatrix} \Rightarrow \det(A)=p-13 \Rightarrow \bbox[red, 2pt]{p\ne13} \\\textbf{(b) }p=13 \Rightarrow \cases{x_1+x_3=q\\ x_2+2x_4=0\\ x_1+2x_3+3x_4=0\\ 2x_2+3x_3+ 13x_4 =3} \Rightarrow \cases{x_3+3x_4=-q\\ 3x_3+9x_4=3} \Rightarrow \text{no solution: } \bbox[red, 2pt]{p=13, q\ne-1} \\\textbf{(c) }\text{ infinity solutions }\Rightarrow {1\over 3}={3\over 9}={-q\over 3} \Rightarrow q=-1 \Rightarrow \bbox[red, 2pt]{p-13,q=-1}

解答:\text{Let } \cases{x_1=\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix} \\[1ex]x_2 =\begin{bmatrix} 3\\ 1\\ 4 \end{bmatrix} \\[1ex]b= \begin{bmatrix} 1\\0\\ -1 \end{bmatrix}} \Rightarrow \cases{Ax_1=b \\ Ax_2=b} \Rightarrow Ax_1+Ax_2=A(x_1+x_2) =2b \Rightarrow A({x_1+x_2\over 2})=b\\ \Rightarrow \text{another solution }x_3={x_1+x_2\over 2} = \bbox[red, 2pt] {\begin{bmatrix} 2\\ 3/2\\ 7/2 \end{bmatrix} }
解答:\lambda \text{ is an eigenvalue of }A \Rightarrow Ax=\lambda x \Rightarrow A^2x= \lambda Ax= \lambda^2 x\Rightarrow A^2x = \lambda^2 x\\ \Rightarrow \lambda^2 \text{ is an eigenvalue of }A^2 \quad \bbox[red, 2pt]{QED}

解答:A=\begin{bmatrix}-2& 12\\ -1&5 \end{bmatrix} =\begin{bmatrix}4& 3\\1& 1 \end{bmatrix} \begin{bmatrix}1& 0\\0& 2 \end{bmatrix} \begin{bmatrix}1&-3\\-1&4 \end{bmatrix} \Rightarrow A^{10} = \begin{bmatrix}4& 3\\1& 1 \end{bmatrix} \begin{bmatrix}1^{10}& 0\\0& 2^{10} \end{bmatrix} \begin{bmatrix}1&-3\\-1&4 \end{bmatrix}\\= \begin{bmatrix}4-3\cdot 2^{10}& -12(1-2^{10})\\1-2^{10}& -3+4\cdot 2^{10} \end{bmatrix} = \bbox[red, 2pt]{\begin{bmatrix}-3068& 12276\\-1023& 4093 \end{bmatrix}}
解答:2x_1-x_3+x_4=0 \Rightarrow (x_1, x_2,x_3, x_4) =(x_1,x_2,2x_1+x_4,x_4)\\ =x_1(1,0,2,0)+ x_2(0,1,0,0)+ x_4(0,0,1,1) \Rightarrow \{(1,0,2,0), (0,1,0,0), (0,0,1,1)\} \text{ is a basis for }W\\ \text{Applying Gram-Schmidt process, we have the orthonormal basis: }\\ \bbox[red, 2pt]{\{({\sqrt 5\over 5}, 0, {2\sqrt 5\over 5},0), (0,1,0,0), (-{\sqrt{30} \over 15},0, {\sqrt{30} \over 30}, {\sqrt{30}\over 6})\}}
解答:\textbf{(a) }A= \bbox[red, 2pt]{\begin{bmatrix} 4/5& 1/10\\ 1/5& 9/10 \end{bmatrix}} \\ \textbf{(b) }A= \begin{bmatrix} -1 & \frac{1}{2} \\1 & 1 \end{bmatrix} \begin{bmatrix}\frac{7}{10} & 0 \\0 & 1 \end{bmatrix} \begin{bmatrix} \frac{-2}{3} & \frac{1}{3} \\\frac{2}{3} & \frac{2}{3} \end{bmatrix} \Rightarrow A^\infty =\begin{bmatrix} -1 & \frac{1}{2} \\1 & 1 \end{bmatrix} \begin{bmatrix} (\frac{7}{10})^\infty & 0 \\0 & 1^\infty \end{bmatrix} \begin{bmatrix} \frac{-2}{3} & \frac{1}{3} \\\frac{2}{3} & \frac{2}{3} \end{bmatrix} \\=\begin{bmatrix} -1 & \frac{1}{2} \\1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\0 & 1 \end{bmatrix} \begin{bmatrix} \frac{-2}{3} & \frac{1}{3} \\\frac{2}{3} & \frac{2}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\\frac{2}{3} & \frac{2}{3} \end{bmatrix} \Rightarrow \lim_{k\to \infty} A^k \begin{bmatrix} 1\\0\end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\\frac{2}{3} & \frac{2}{3} \end{bmatrix} \begin{bmatrix} 1\\0\end{bmatrix} = \bbox[red, 2pt]{\begin{bmatrix} {1 \over 3}\\{2\over 3}\end{bmatrix}}
解題僅供參考,其他碩士班試題及詳解
沒有留言:
張貼留言