國立中山大學114學年碩士班考試入學招生考試
科目名稱:工程數學【離岸風電碩士班碩士班選考、海工系碩士班選考、海工聯合碩士班選考】
解答:λ2−4λ+4=(λ−2)2=0⇒λ=2⇒y=c1e2x+c2xe2x⇒y′=(2c1+c2)e2x+2c2xe2x⇒{y(0)=c1=3y′(0)=2c1+c2=1⇒{c1=3c2=−5⇒y=3e2x−5xe2x解答:y=xm⇒y′=mxm−1⇒y″=m(m−1)xm−2⇒x2y″−3xy′+4y=m(m−1)xm−3mxm+4xm=(m2−4m+4)xm=0⇒(m−2)2=0⇒m=2⇒y=c1x2+c2x2lnx
解答:[−1121003−11010−134001]3R1+R2→R2,R3−R1→R3→[−112100027310022−101]−R1→R1,R3−R2→R3→[1−1−2−10002731000−5−4−11]R2/2→R2,R3/(−5)→R3→[1−1−2−1000172321200014515−15]R1+R2→R2→[1032121200172321200014515−15]R1−(3/2)R3→R1,R2−(7/2)R3→R2→[100−71015310010−1310−157100014515−15]⇒[−1123−11−134]−1=[−71015310−1310−157104515−15]
解答:(1) div xyz(xi+yj+zk)=div (x2yzi+xy2zj+xyz2k)=∂∂x(x2yz)+∂∂y(xy2z)+∂∂z(xyz2)=2xyz+2xyz+2xyz=6xyz(2) curl xyz(xi+yj+zk)=curl (x2yzi+xy2zj+xyz2k)=|ijk∂∂x∂∂y∂∂zx2yzxy2zxyz2|=(xz2−xy2)i+(x2y−yz2)j+(y2z−x2z)k
解答:L{eat}=∫∞0eat⋅e−stdt=∫∞0e−(s−a)tdt=[−1s−ae−(s−a)t]|∞0=1s−a
解答:A=[−22−321−6−1−20]⇒det(A−λI)=−(λ+3)2(λ−5)=0⇒λ=−3,5λ1=−3⇒(A−λ1I)v=0⇒[12−324−6−1−23][x1x2x3]=0⇒x1+2x2=3x3⇒v=x2(−210)+x3(301), choose v1=(−210),v2=(301)λ2=5⇒(A−λ2I)v=0⇒[−72−32−4−6−1−2−5][x1x2x3]=0⇒{x1+x3=0x2+2x3=0⇒v=x3(−1−21), choose v3=(−1−21)⇒eigenvalues: −3,5, and the corresponding eigenvectors: (−210),(301),(−1−21)
解答:f(−x)=−f(x)⇒f(x) is odd⇒an=0bn=1π∫π−πf(x)sin(nx)dx=2π∫π0ksin(nx)dx=2knπ(1−(−1)n)⇒f(x)=∞∑n=12knπ(1−(−1)n)sin(nx)dx
解答:Suppose u(x,t)=X(x)T(t), then∂2u∂t2=c2∂2u∂x2⇒XT″=c2X″T⇒T″c2T=X″X=αB.C.: {u(0,t)=X(0)T(t)=0u(L,t)=X(L)T(t)=0⇒{X(0)=0X(L)=0Case I α=0⇒X″=0⇒X=c1x+c2⇒B.C.:{X(0)=c2=0X(L)=c1L+c2=0⇒{c1=0c2=0⇒X=0⇒u=0Case II α=ρ2>0⇒X″−ρ2X=0⇒X=c1eρx+c2e−ρx⇒B. C.: {X(0)=c1+c2=0X(L)=c1eρL+c2e−ρL=0⇒c1eρL−c1e−ρL=0⇒c1(e2ρL−1)=0⇒c1=0⇒c2=0⇒X=0⇒u=0Case III α=−ρ2<0⇒X″+ρ2X=0⇒X=c1cos(ρx)+c2sin(ρx)⇒B.C.:{X(0)=c1=0X(L)=c1cos(ρL)+c2sin(ρL)=0⇒sin(ρL)=0⇒ρL=nπ⇒ρ=nπL⇒Xn=c2sin(nπxL),n=1,2,…⇒T″+ρ2c2T=0⇒T=c3cos(ρct)+c4sin(ρct)⇒Tn=c3cos(ncπtL)+c4sin(ncπtL)⇒un=c2sin(nπxL)(c3cos(ncπtL)+c4sin(ncπtL))⇒u(x,t)=∞∑n=1sin(nπxL)(ancos(ncπtL)+bnsin(ncπtL))⇒ut(x,t)=∞∑n=1sin(nπxL)(−anncπLsinncπtL+bnncπLcosncπtL)I.C.: u(x,0)=∞∑n=1ansin(nπxL)=sinπxL⇒{a1=1an=0,n≠1I.C.: ut(x,0)=∞∑n=1bnncπLsin(nπxL)=0⇒bn=0⇒u(x,t)=sinπxLcoscπtL
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
沒有留言:
張貼留言