Loading [MathJax]/jax/output/CommonHTML/jax.js

2025年3月20日 星期四

114年中山大學海工碩士班-工程數學詳解

 國立中山大學114學年碩士班考試入學招生考試

科目名稱:工程數學【離岸風電碩士班碩士班選考、海工系碩士班選考、海工聯合碩士班選考】

解答:λ24λ+4=(λ2)2=0λ=2y=c1e2x+c2xe2xy=(2c1+c2)e2x+2c2xe2x{y(0)=c1=3y(0)=2c1+c2=1{c1=3c2=5y=3e2x5xe2x
解答:y=xmy=mxm1y=m(m1)xm2x2y3xy+4y=m(m1)xm3mxm+4xm=(m24m+4)xm=0(m2)2=0m=2y=c1x2+c2x2lnx
解答:[112100311010134001]3R1+R2R2,R3R1R3[112100027310022101]R1R1,R3R2R3[112100027310005411]R2/2R2,R3/(5)R3[112100017232120001451515]R1+R2R2[103212120017232120001451515]R1(3/2)R3R1,R2(7/2)R3R2[10071015310010131015710001451515][112311134]1=[71015310131015710451515]
解答:(1) div xyz(xi+yj+zk)=div (x2yzi+xy2zj+xyz2k)=x(x2yz)+y(xy2z)+z(xyz2)=2xyz+2xyz+2xyz=6xyz(2) curl xyz(xi+yj+zk)=curl (x2yzi+xy2zj+xyz2k)=|ijkxyzx2yzxy2zxyz2|=(xz2xy2)i+(x2yyz2)j+(y2zx2z)k
解答:L{eat}=0eatestdt=0e(sa)tdt=[1sae(sa)t]|0=1sa
解答:A=[223216120]det(AλI)=(λ+3)2(λ5)=0λ=3,5λ1=3(Aλ1I)v=0[123246123][x1x2x3]=0x1+2x2=3x3v=x2(210)+x3(301), choose v1=(210),v2=(301)λ2=5(Aλ2I)v=0[723246125][x1x2x3]=0{x1+x3=0x2+2x3=0v=x3(121), choose v3=(121)eigenvalues: 3,5, and the corresponding eigenvectors: (210),(301),(121)
解答:f(x)=f(x)f(x) is oddan=0bn=1πππf(x)sin(nx)dx=2ππ0ksin(nx)dx=2knπ(1(1)n)f(x)=n=12knπ(1(1)n)sin(nx)dx
解答:Suppose u(x,t)=X(x)T(t), then2ut2=c22ux2XT=c2XTTc2T=XX=αB.C.: {u(0,t)=X(0)T(t)=0u(L,t)=X(L)T(t)=0{X(0)=0X(L)=0Case I α=0X=0X=c1x+c2B.C.:{X(0)=c2=0X(L)=c1L+c2=0{c1=0c2=0X=0u=0Case II α=ρ2>0Xρ2X=0X=c1eρx+c2eρxB. C.: {X(0)=c1+c2=0X(L)=c1eρL+c2eρL=0c1eρLc1eρL=0c1(e2ρL1)=0c1=0c2=0X=0u=0Case III α=ρ2<0X+ρ2X=0X=c1cos(ρx)+c2sin(ρx)B.C.:{X(0)=c1=0X(L)=c1cos(ρL)+c2sin(ρL)=0sin(ρL)=0ρL=nπρ=nπLXn=c2sin(nπxL),n=1,2,T+ρ2c2T=0T=c3cos(ρct)+c4sin(ρct)Tn=c3cos(ncπtL)+c4sin(ncπtL)un=c2sin(nπxL)(c3cos(ncπtL)+c4sin(ncπtL))u(x,t)=n=1sin(nπxL)(ancos(ncπtL)+bnsin(ncπtL))ut(x,t)=n=1sin(nπxL)(anncπLsinncπtL+bnncπLcosncπtL)I.C.: u(x,0)=n=1ansin(nπxL)=sinπxL{a1=1an=0,n1I.C.: ut(x,0)=n=1bnncπLsin(nπxL)=0bn=0u(x,t)=sinπxLcoscπtL

========================== END =========================

解題僅供參考,碩士班歷年試題及詳解

沒有留言:

張貼留言