Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

2025年3月18日 星期二

114年中山大學海下所碩士班-工程數學詳解

 國立中山大學114學年碩士班考試入學招生考試

科目名稱:工程數學【海下所碩士班】


解答:f(x)=exf[n](x)=exf[n](0)=1ex=1+x+12!x2+13!x3+14!x4+ex=1+x+12x2+16x3+124x4+eix=1+ix+12(ix)2+16(ix)3+124(ix4)+eix=1+ix1x216ix3+124x4+
解答:(AB)1=B1A1=(1111)(4321)=(6422)
解答:y+1xy=3xxy+y=3x2(xy)=3x2xy=x3+c1y=x2+c1xy(1)=1+c1=2c1=1y=x2+1x


解答:L{1}=0estdt=[1sest]|0=1sL{eat}=0eatestdt=0e(sa)tdt=[1sae(sa)t]|0=1saL{1}=1s,L{eat}=1sa
解答:x2y
解答:f(t) =2t^2 \Rightarrow f(-t)=f(t) \Rightarrow f(t)\text{ is even } \Rightarrow b_n=0\\ a_0 ={1\over 2\pi} \int_0^{2\pi} 2t^2 \,dt ={8\over 3}\pi^2\\ a_n= {1\over \pi} \int_0^{2\pi} 2t^2 \cos(nt) \,dt ={1\over \pi} \cdot {8\pi\over n^3} ={8\over n^3} \\ \Rightarrow \bbox[red, 2pt]{f(t)={8\over 3}\pi^2 + \sum_{n=1}^\infty {8\over n^3} \cos (nt)}

解答:{\partial^2 p\over \partial x^2} ={1\over c^2}\cdot {\partial^2 p\over \partial t^2} \Rightarrow {\partial^2 p\over \partial t^2}=c^2{\partial^2 p\over \partial x^2} \Rightarrow  \text{By d'Alembert's method: } \\p(x,t)= {1\over 2}\left( f(x+ct) +f(x-ct)\right)+{1\over 2c}\int_{x-ct}^{x+ct} g(s)\,ds, \\\cases{f(x)={1\over 1+4x^2}\\g(x)=0} \Rightarrow \bbox[red, 2pt]{p(x,t)={1\over 2}\left({1\over 1+4(x+ct)^2}+ {1\over 1+4(x-ct)^2} \right)}+0

========================== END =========================

解題僅供參考,碩士班歷年試題及詳解

沒有留言:

張貼留言