114 學年度身心障礙學生升學大專校院甄試
甄試類(群)組別:大學組-數學 A
解答:{A:100±5%B:200±11%⇒{100(1−5%)≤A≤100(1+5%)200(1−11%)≤B≤200(1+11%)⇒{95≤A≤105178≤B≤222⇒273≤A+B≤327⇒300−27≤A+B≤300+27⇒27300=9%,故選(C)
解答:{a1=−7/2a2=−2⇒公差d=a2−a1=32⇒a3=−2+32=−12⇒a4=−12+32=1⇒公比r=a4a3=−2⇒a5=a4⋅r=−2⇒a6=−2⋅−2=4⇒{a3=−1/2a4=1a5=−2a6=4⇒a5<−1,故選(C)
解答:抽出卡片數字依序為a,b,c,b=6⇒(a,b,c)=(7,6,8−11),(8,6,{7,9−11}),(9,6,{7,8,10,11}),(10,6,{7−9,11}),(11,6,7−10),共有5×4=20種b=8,10,也各有20種,因此b為偶數共有60種其中遞增的情形:(a,b,c)=({6,7}8,9−11),(6−9,10,11),共有6+4=10種,因此機率為1060=16,故選(D)
解答:{a1=−7/2a2=−2⇒公差d=a2−a1=32⇒a3=−2+32=−12⇒a4=−12+32=1⇒公比r=a4a3=−2⇒a5=a4⋅r=−2⇒a6=−2⋅−2=4⇒{a3=−1/2a4=1a5=−2a6=4⇒a5<−1,故選(C)
解答:抽出卡片數字依序為a,b,c,b=6⇒(a,b,c)=(7,6,8−11),(8,6,{7,9−11}),(9,6,{7,8,10,11}),(10,6,{7−9,11}),(11,6,7−10),共有5×4=20種b=8,10,也各有20種,因此b為偶數共有60種其中遞增的情形:(a,b,c)=({6,7}8,9−11),(6−9,10,11),共有6+4=10種,因此機率為1060=16,故選(D)
解答:取{a=3/2b=9⇒{loga=log3−log2=0.4771−0.301=0.1761logb=log9=2×0.4771=0.9542⇒{(A)3loga+logb=1.4825(B)loga+2logb=2.0845(C)logab=logb/loga≈5.4(D)logba=loga/logb≈0.18,故選(C)
解答:假設{兌換卡包x個兌換桌遊y個,則x+2y=5⇒{(x,y)=(1,2)有C61C52=60種組合(x,y)=(3,1)有C63C51=100種組合(x,y)=(5,0)有C65C50=6種組合共有60+100+6=166種組合,故選(D)
解答:
解答:假設{兌換卡包x個兌換桌遊y個,則x+2y=5⇒{(x,y)=(1,2)有C61C52=60種組合(x,y)=(3,1)有C63C51=100種組合(x,y)=(5,0)有C65C50=6種組合共有60+100+6=166種組合,故選(D)
解答:

假設圓心O(a,a),直線y=2x與圓交於A,B兩點,P為¯AB中點,則¯OP=|a|√5⇒¯OA2=¯PA2+¯OP2⇒32=1+a25⇒2√10,故選(C)
解答:{→a=(cosθ,sinθ)→b=(−sinθ,cosθ)⇒3→a+4→b=(3cosθ−4sinθ,4cosθ+3sinθ)⇒(1,2)⋅(3→a+4→b)=(1,2)⋅(3cosθ−4sinθ,4cosθ+3sinθ)=11cosθ+2sinθ⇒最大值=√112+22=√125=5√5,故選(A)
解答:[abcd]=[cosθ−sinθsinθcosθ]⇒ad+bc=cos2θ−sin2θ=2cos2θ−1=725⇒cos2θ=1625⇒a=cosθ=±45,故選(C)
解答:區間範圍數量累積數量1a≤503535250<a≤10030653100<a≤15020854150<a≤20010955200<a5100⇒甲所得130萬元屬於第3區間若k=77,也在第3區間,與甲所得差距不可能大於50萬元,故選(C)
解答:直線L:(1+t,t,t),t∈R⇒方向向量→u=(1,1,1)⇒A(1,0,0)在直線L上P(1,2,4)⇒→AP=(0,2,4)⇒cosθ=→AP⋅→u|→AP||→u|=62√15⇒sinθ=√25⇒圓半徑r=|→AP|sinθ⇒2√5⋅√25=2√2⇒圓面積=r2π=8π,故選(B)
解答:f(x)=x3+ax2⇒f′(x)=3x2+2ax⇒f″
解答:假設\cases{x=2^a\\ y=2^b} \Rightarrow \cases{2^a=2^b-2\\ 4^a=4^b-12} \Rightarrow \cases{x=y-2\\ x^2=y^2-12} \Rightarrow \cases{x-y=-2\\ (x^2-y^2)=(x+y)(x-y) =-12} \\ \Rightarrow \cases{x-y=-2\\x+y=6} \Rightarrow \cases{x=2 =2^a\\ y=4=2^b} \Rightarrow \cases{a=1\\ b=2} \Rightarrow a-b=-1故選\bbox[red, 2pt]{(B)}
解答:1^2\times{100\over 500}+3^2\times{50\over 500}+ 16\times{50\over 500} ={1350\over 500}=2.7,故選\bbox[red, 2pt]{(C)}
解答:\cases{ax+by=1 \\ cx+dy=2} \Rightarrow {a\over c}={b\over d}={1\over 2} \Rightarrow \cases{c=2a\\d=2b} \Rightarrow \cases{ax+by+ 2z=1\\ cx+dy+z=1\\ x+y-z=0} \Rightarrow \cases{ax +by+ 2z=1\\ 2ax+ 2by+z=1\\ z=x+y} \\ \Rightarrow \cases{(a+2)x+ (b+2)y=1\\ (2a+1)x+ (2b+1)y=1} \Rightarrow {a+2\over 2a+1} ={b+2 \over 2b+1} ={1\over 1} \Rightarrow a=b=1,故選\bbox[red, 2pt]{(A)}
解答:Q=(a,b) \Rightarrow \cases{|\overrightarrow{OP}+ \overrightarrow{OQ}|= 3\\|\overrightarrow{OP}- \overrightarrow{OQ}|= 7} \Rightarrow \cases{(a+2)^2+ (b+3)^2 =3^2\\ (a-2)^2+ (b-3)^2=7^2} \\ \Rightarrow \cases{a^2+4a+4+b^2+6b+9=9\\ a^2-4a+4+b^2-6b+9=49}兩式相加\Rightarrow a^2+b^2=16\\ \Rightarrow |\overrightarrow{OQ}| =\sqrt{a^2+b^2} =4,故選\bbox[red, 2pt]{(A)}
解答:
解答:{→a=(cosθ,sinθ)→b=(−sinθ,cosθ)⇒3→a+4→b=(3cosθ−4sinθ,4cosθ+3sinθ)⇒(1,2)⋅(3→a+4→b)=(1,2)⋅(3cosθ−4sinθ,4cosθ+3sinθ)=11cosθ+2sinθ⇒最大值=√112+22=√125=5√5,故選(A)
解答:[abcd]=[cosθ−sinθsinθcosθ]⇒ad+bc=cos2θ−sin2θ=2cos2θ−1=725⇒cos2θ=1625⇒a=cosθ=±45,故選(C)
解答:區間範圍數量累積數量1a≤503535250<a≤10030653100<a≤15020854150<a≤20010955200<a5100⇒甲所得130萬元屬於第3區間若k=77,也在第3區間,與甲所得差距不可能大於50萬元,故選(C)
解答:直線L:(1+t,t,t),t∈R⇒方向向量→u=(1,1,1)⇒A(1,0,0)在直線L上P(1,2,4)⇒→AP=(0,2,4)⇒cosθ=→AP⋅→u|→AP||→u|=62√15⇒sinθ=√25⇒圓半徑r=|→AP|sinθ⇒2√5⋅√25=2√2⇒圓面積=r2π=8π,故選(B)
解答:f(x)=x3+ax2⇒f′(x)=3x2+2ax⇒f″
解答:假設\cases{x=2^a\\ y=2^b} \Rightarrow \cases{2^a=2^b-2\\ 4^a=4^b-12} \Rightarrow \cases{x=y-2\\ x^2=y^2-12} \Rightarrow \cases{x-y=-2\\ (x^2-y^2)=(x+y)(x-y) =-12} \\ \Rightarrow \cases{x-y=-2\\x+y=6} \Rightarrow \cases{x=2 =2^a\\ y=4=2^b} \Rightarrow \cases{a=1\\ b=2} \Rightarrow a-b=-1故選\bbox[red, 2pt]{(B)}
解答:1^2\times{100\over 500}+3^2\times{50\over 500}+ 16\times{50\over 500} ={1350\over 500}=2.7,故選\bbox[red, 2pt]{(C)}
解答:\cases{ax+by=1 \\ cx+dy=2} \Rightarrow {a\over c}={b\over d}={1\over 2} \Rightarrow \cases{c=2a\\d=2b} \Rightarrow \cases{ax+by+ 2z=1\\ cx+dy+z=1\\ x+y-z=0} \Rightarrow \cases{ax +by+ 2z=1\\ 2ax+ 2by+z=1\\ z=x+y} \\ \Rightarrow \cases{(a+2)x+ (b+2)y=1\\ (2a+1)x+ (2b+1)y=1} \Rightarrow {a+2\over 2a+1} ={b+2 \over 2b+1} ={1\over 1} \Rightarrow a=b=1,故選\bbox[red, 2pt]{(A)}
解答:Q=(a,b) \Rightarrow \cases{|\overrightarrow{OP}+ \overrightarrow{OQ}|= 3\\|\overrightarrow{OP}- \overrightarrow{OQ}|= 7} \Rightarrow \cases{(a+2)^2+ (b+3)^2 =3^2\\ (a-2)^2+ (b-3)^2=7^2} \\ \Rightarrow \cases{a^2+4a+4+b^2+6b+9=9\\ a^2-4a+4+b^2-6b+9=49}兩式相加\Rightarrow a^2+b^2=16\\ \Rightarrow |\overrightarrow{OQ}| =\sqrt{a^2+b^2} =4,故選\bbox[red, 2pt]{(A)}
解答:
\triangle BAD面積={1\over 2}\cdot \overline{AB}\cdot \overline{AD}\sin \angle BAD \Rightarrow {1\over 2}\cdot 5\cdot 5\sin \angle BAD= 12 \Rightarrow \sin \angle BAD ={24\over 25} \\ \Rightarrow \cos \angle BAD =-{7\over 25} ={\overline{AB}^2+ \overline{AD}^2-\overline{BD}^2 \over 2\cdot \overline{AB} \cdot \overline{AD}} ={50-\overline{BD}^2\over 50} \Rightarrow \overline{BD}=8 \\ \cos \angle BCD=-\cos \angle BAD ={7\over 25} ={\overline{BC}^2+ \overline{CD}^2-\overline{BD}^2 \over 2\cdot \overline{BC}\cdot \overline{CD}} ={\overline{CD}^2- 39\over 10\overline{CD}} \Rightarrow \overline{CD}={39\over 5},故選\bbox[red, 2pt]{(A)}
解答:\overrightarrow{OA} 與L的方向向量(1,a,b)平行,即 \overrightarrow{OA}=k(1,a,b)=(k, ak,bk) \\ \Rightarrow \overrightarrow{OA}\cdot (-4,2,4)=-4k+2ak+4bk=3 \Rightarrow a+2b={3+4k\over 2k} =m為一定值\\ \Rightarrow 4k=2mk \Rightarrow m=2,故選\bbox[red, 2pt]{(B)}
解答:Q,R在x+y+z=1上,可假設\cases{Q(a,b,1-a-b)\\ R(c,d,1-c-d)}\\ \Rightarrow \cases{\overrightarrow{OQ} \cdot \overrightarrow{OP} =(a,b,1-a-b) \cdot (1,1,0)=a+b=0 \\ \overrightarrow{OR}\cdot \overrightarrow{OP} =(c,d,1-c-d)\cdot (1,1,0)=c+d=0} \\\Rightarrow \cases{Q(a,-a,1) \\ R(c,-c,1)} \Rightarrow \cases{\overline{OQ} =\sqrt{2a^2+1} =3\\ \overline{OR} =\sqrt{2c^2+1} =3} \Rightarrow \cases{a=\pm 2\\ c=\pm 2} \Rightarrow \cases{Q(2,-2,1)\\ R(-2,2,1)} 或\cases{Q(-2,2,1)\\ R(2,-2,1)} \\ \Rightarrow \overrightarrow{OQ} \cdot \overrightarrow{OR} =-4-4+1=-7,故選\bbox[red, 2pt]{(B)}
解答:\cases{a_1x+a_2y+a_3z=m_1\\ b_1x+b_2y +b_3z=m_2\\ c_1x+c_2y+c_3z=m_3} \Rightarrow (1,0,0),(1,1,0),(2,4,1),(3,6,2)均為c_1x+c_2y+c_3z=m_3的解\\ \Rightarrow \cases{c_1=m_3\\ c_2+c_2=m_3\\ 2c_1+ 4c_2+ c_3 =m_3\\ 3c_1 +6c_2+ 2c_3=m_3} \Rightarrow \cases{c_1=m_3\\ c_2=0\\ c_3=-m_3} \Rightarrow m_3x-m_3z=m_3 \Rightarrow x-z=1,故選\bbox[red, 2pt]{(D)}
======================== END ===========================
解答:\overrightarrow{OA} 與L的方向向量(1,a,b)平行,即 \overrightarrow{OA}=k(1,a,b)=(k, ak,bk) \\ \Rightarrow \overrightarrow{OA}\cdot (-4,2,4)=-4k+2ak+4bk=3 \Rightarrow a+2b={3+4k\over 2k} =m為一定值\\ \Rightarrow 4k=2mk \Rightarrow m=2,故選\bbox[red, 2pt]{(B)}
解答:Q,R在x+y+z=1上,可假設\cases{Q(a,b,1-a-b)\\ R(c,d,1-c-d)}\\ \Rightarrow \cases{\overrightarrow{OQ} \cdot \overrightarrow{OP} =(a,b,1-a-b) \cdot (1,1,0)=a+b=0 \\ \overrightarrow{OR}\cdot \overrightarrow{OP} =(c,d,1-c-d)\cdot (1,1,0)=c+d=0} \\\Rightarrow \cases{Q(a,-a,1) \\ R(c,-c,1)} \Rightarrow \cases{\overline{OQ} =\sqrt{2a^2+1} =3\\ \overline{OR} =\sqrt{2c^2+1} =3} \Rightarrow \cases{a=\pm 2\\ c=\pm 2} \Rightarrow \cases{Q(2,-2,1)\\ R(-2,2,1)} 或\cases{Q(-2,2,1)\\ R(2,-2,1)} \\ \Rightarrow \overrightarrow{OQ} \cdot \overrightarrow{OR} =-4-4+1=-7,故選\bbox[red, 2pt]{(B)}
解答:\cases{a_1x+a_2y+a_3z=m_1\\ b_1x+b_2y +b_3z=m_2\\ c_1x+c_2y+c_3z=m_3} \Rightarrow (1,0,0),(1,1,0),(2,4,1),(3,6,2)均為c_1x+c_2y+c_3z=m_3的解\\ \Rightarrow \cases{c_1=m_3\\ c_2+c_2=m_3\\ 2c_1+ 4c_2+ c_3 =m_3\\ 3c_1 +6c_2+ 2c_3=m_3} \Rightarrow \cases{c_1=m_3\\ c_2=0\\ c_3=-m_3} \Rightarrow m_3x-m_3z=m_3 \Rightarrow x-z=1,故選\bbox[red, 2pt]{(D)}
沒有留言:
張貼留言